
ARRAY-COMPARATIVE GENOMIC HYBRIDIZATION
RESULTS IN CLINICALLY AFFECTED CASES
WITH APPARENTLY BALANCED CHROMOSOMAL
REARRANGEMENTS Satkin NB, Karaman B, Ergin S, Kayserili H, Kalelioglu IH, Has R, Yuksel A, Basaran S *Corresponding Author: Nihan B. Satkin, Ph.D., Department of Medical Genetics, Istanbul University
Faculty of Medicine, Millete Street, 34093, Istanbul, Turkey. Tel.: +90-536-561-0313.
Fax: +90-212-414-2000. E-mail: bilgenihan@gmail.com page: 25
|
REFERENCES
1. Jacobs PA, Browne C, Gregson N, Joyce C, White
H. Estimates of the frequency of chromosome abnormalities
detectable in unselected newborns using
moderate levels of banding. J Med Genet. 1992;
29(2): 103-108.
2. Kirchhoff M, Rose H, Lundsteen C. High resolution
comparative genomic hybridisation in clinical
cytogenetics. J Med Genet. 2001; 38(11): 740-744.
3. Warburton D. De novo balanced chromosome rearrangements
and extra marker chromosomes identified
at prenatal diagnosis: Clinical significance and
distribution of breakpoints. Am J Hum Genet. 1991;
49(5): 995-1013.
4. Madan K, Nieuwint AW, van Bever Y. Recombination
in a balanced complex translocation of a mother
leading to a balanced reciprocal translocation in the
child. Review of 60 cases of balanced complex translocations.
Hum Genet. 1997; 99(6): 806-815.
5. Sismani C, Kitsiou-Tzeli S, Ioannides M, Christodoulou
C, Anastasiadou V, Stylianidou G, et al. Cryptic
genomic imbalances in patients with de novo or familial
apparently balanced translocations and abnormal
phenotype. Mol Cytogenet. 2008; 1(7): 15-23.
6. Menten B, Maas N, Thienpont B, Buysse K, Vandesompele
J, Melotte C, et al. Emerging patterns of cryptic
chromosomal imbalance in patients with idiopathic
mental retardation and multiple congenital anomalies:
A new series of 140 patients and review of published
reports. J Med Genet. 2006; 43(8): 625-633.
7. Rauch A, Rüschendorf F, Huang J, Trautmann U,
Becker C, Thiel C, et al. Molecular karyotyping using
an SNP array for genomewide genotyping. J Med
Genet. 2004; 41(12): 916-922.
8. Riggs ER, Andersen EF, Cherry AM, Kantarci S,
Kearney H, Patel A, et al. Technical standards for the
interpretation and reporting of constitutional copynumber
variants: A joint consensus recommendation
of the American College of Medical Genetics and
Genomics (ACMG) and the Clinical Genome Resource
(ClinGen). Genet Med. 2020; 22(2): 245-257.
9. South ST, Lee C, Lamb AN, Higgins AW, Kearney
HM; Working Group for the American College of
Medical Genetics and Genomics Laboratory Quality
Assuarance Committee. ACMG Standards and
Guidelines for constitutional cytogenomic microarray
analysis, including postnatal and prenatal applications:
Revision 2013. Genet Med. 2013; 15(11): 901-
909 (https://pubmed.ncbi.nlm. nih.gov/2407193/).
10. Darilek S, Ward P, Pursley A, Plunkett K, Furman P,
Magoulas P, et al. Pre- and postnatal genetic testing
by array-comparative genomic hybridization: Genetic
counseling perspectives. Genet Med. 2008; 10(1):
13-18.
11. De Gregori M, Ciccone R, Magini P, Pramparo T,
Gimelli S, Messa J, et al. Cryptic deletions are a common
finding in “balanced” reciprocal and complex
chromosome rearrangements: A study of 59 patients.
J Med Genet. 2007; 44(12): 750-762. 12. Feenstra I, Hanemaaijer N, Sikkema-Raddatz B,
Yntema H, Dijkhuizen T, Lugtenberg D, et al. Balanced
into array: genome-wide array analysis in 54
patients with an apparently balanced de novo chromosome
rearrangement and a meta-analysis. Eur J Hum
Genet. 2011; 19(11): 1152-1160.
13. Gribble SM, Prigmore E, Burford DC, Porter KM, Ng
BL, Douglas EJ, et al. The complex nature of constitutional
de novo apparently balanced translocations
in patients presenting with abnormal phenotypes. J
Med Genet. 2005; 42(1): 8-16.
14. Schluth-Bolard C, Delobel B, Sanlaville D, Boute O,
Cuisset JM, Sukno S, et al. Cryptic genomic imbalances
in de novo and inherited apparently balanced
chromosomal rearrangements: Array CGH study of
47 unrelated cases. Eur J Med Genet. 2009; 52(5):
291-296.
15. Tabet AC, Verloes A, Pilorge M, Delaby E, Delorme
R, Nygren G, et al. Complex nature of apparently
balanced chromosomal rearrangements in patients
with autism spectrum disorder. Mol Autism. 2015;
6(5): 19-32.
16. Gijsbers AC, Bosch CA, Dauwerse JG, Giromus
O, Hansson K, Hilhorst-Hofstee Y, et al. Additional
cryptic CNVs in mentally retarded patients with
apparently balanced karyotypes. Eur J Med Genet.
2010; 53(5): 227-233.
17. Yakut S, Cetin Z, Clark OA, Nur BG, Mihci E, Karauzum
SB. Associations between the clinical findings
of cases having submicroscopic chromosomal
imbalances at chromosomal breakpoints of apparently
balanced structural rearrangements. Gene Rep. 2017;
7(7): 50-58 (https:// www.sciencedirect.com/science/
article/pii/S245201441 7300092).
18. Dong Z, Wang H, Chen H, Jiang H, Yuan J, Yang Z,
et al. Identification of balanced chromosomal rearrangements
previously unknown among participants
in the 1000 Genomes Project: Implications for interpretation
of structural variation in genomes and the
future of clinical cytogenetics. Genet Med. 2018;
20(7): 697-707.
19. van Bon BW, Balciuniene J, Fruhman G, Naga-mani
SC, Broome DL, Cameron E, et al. The phenotype of
recurrent 10q22q23 deletions and duplications. Eur J
Hum Genet. 2011; 19(4): 400-408.
20. Nenadic I, Maitra R, Scherpiet S, Gaser C, Schultz
CC, Schachtzabel C, et al. Glutamate receptor δ1
(GRID1) genetic variation and brain structure in
schizophrenia. J Psychiat Res. 2012; 46(12): 1531-
1539.
21. Treutlein J, Mühleisen TW, Frank J, Mattheisen M,
Herms S, Ludwig KU, et al. Dissection of phenotype
reveals possible association between schizophrenia
and Glutamate Receptor Delta 1 (GRID1) gene promoter.
J Psychiatr Res. 2009; 111(1-3): 123-130
(https://pubmed. ncbi.nlm.nih.gov/19346103/).
22. Evangelidou P, Sismani C, Ioannides M, Christodoulou
C, Koumbaris G, Kallikas I, et al. Clinical
application of whole-genome array CGH during prenatal
diagnosis: Study of 25 selected pregnancies with
abnormal ultrasound findings or apparently balanced
structural aberrations. Mol Cytogenet. 2010; 3: 24.
23. Armour CM, Dougan SD, Brock JA, Chari R,
Chodirker BN, DeBie I, et al. Practice guideline:
Joint CCMG-SOGC recommendations for the use of
chromosomal microarray analysis for prenatal diagnosis
and assessment of fetal loss in Canada. J Med
Genet. 2018; 55(4): 215-221.
24. Shaffer LG, Dabell MP, Rosenfeld JA, Neill NJ, Ballif
BC, Coppinger J, et al. Referral patterns for microarray
testing in prenatal diagnosis. Prenat Diagn. 2012;
32(4): 344-350.
25. Vanakker O, Vilain C, Janssens K, Van der Aa N, Smits
G, Bandelier C, et al. Implementation of genomic arrays
in prenatal diagnosis: The Belgian approach to
meet the challenges. Eur J Med Genet. 2014; 57(4):
151-156.
26. Levy B, Burnside RD. Are all chromosome microarrays
the same? What clinicians need to know. Prenat
Diagn. 2019; 39(3): 157-164.
27. Shinawi M, Liu P, Kang S-HL, Shen J, Belmont JW,
Scott DA, et al. Recurrent reciprocal 16p11.2 rearrangements
associated with global developmental delay, behavioural
problems, dysmorphism, epilepsy, and abnormal
head size. J Med Genet. 2010; 47(5): 332-341.
28. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT,
Fossdal R, et al. Association between microdeletion
and microduplication at 16p11.2 and autism. N Engl
J Med. 2008; 358(7): 667-675.
29. D’Angelo D, Lebon S, Chen Q, Martin-Brevet S,
Snyder LG, Hippolyte L, et al.; Cardiff University
Experiences of Children with Copy Number Variants
(ECHO) Study; 16p11.2 European Consortium; Simons
Variation in Individuals Project (VIP) Consortium.
Defining the effect of the 16p11.2 duplication
on cognition, behavior, and medical comorbidities.
JAMA Psychiatry. 2016; 73(1): 20-30.
30. Shinawi M, Cheung SW. The array CGH and its clinical
applications. Drug Discov Today. 2008; 13(17-
18): 760-770. 31. Trippe H, Wieczorek S, Kötting J, Kress W, Schara
U. Xp21/A translocation: A rarely considered genetic
cause for manifesting carriers of duchenne muscular
dystrophy. Neuropediatrics. 2014; 45(5): 333-335.
32. Hatch EM, Hetzer MW. Chromothripsis. Curr Biol.
2015; 25(10): R397-R399.
33. Liu P, Carvalho CMB, Hastings PJ, Lupski JR. Mechanisms
for recurrent and complex human genomic
rearrangements. Curr Opin Genet Dev. 2012; 22(3):
211-220.
34. Baptista J, Mercer C, Prigmore E, Gribble SM, Carter
NP, Maloney V, et al. Breakpoint mapping and array
CGH in translocations: Comparison of a phenotypically
normal and an abnormal cohort. Am J Hum
Genet. 2008; 82(4): 927-936.
35. Chen W, Ullmann R, Langnick C, Menzel C,
Wotschofsky Z, Hu H, et al. Breakpoint analysis
of balanced chromosome rearrangements by nextgeneration
paired-end sequencing. Eur J Hum Genet.
2010; 18(5): 539-543.
36. Talkowski ME, Ernst C, Heilbut A, Chiang C,
Hanscom C, Lindgren A, et al. Next-generation
sequencing strategies enable routine detection of
balanced chromosome rearrangements for clinical
diagnostics and genetic research. Am J Hum Genet.
2011; 88(4): 469-481.
37. Higgins AW, Alkuraya FS, Bosco AF, Brown KK,
Bruns GA, Donovan DJ, et al. Characterization of
apparently balanced chromosomal rearrangements
from the developmental genome anatomy project.
Am J Hum Genet. 2008; 82(3): 712-722.
38. Simioni M, Artiguenave F, Meyer V, Sgardioli IC,
Viguetti-Campos NL, Lopes Monlleó I, et al. Genomic
investigation of balanced chromosomal rearrangements
in patients with abnormal phenotypes. Mol
Syndromol. 2017; 8(4): 187-194.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|