
THE ROLE OF RNA METABOLISM
IN NEUROLOGICAL DISEASES Alaqeel AM1,2,*, Abou Al-Shaar H3, Shariff RK3, Albakr A2 *Corresponding Author: Ahmed M. Alaqeel, M.D., Department of Neurosurgery, University of Calgary,
1403 29th Street NW, Calgary, Alberta T2N 2T9, Canada. Tel: +403-970-9117. Fax: +403-270-7878. E-mail:
ahmedalaqeel@hotmail.com page: 5
|
REFERENCES
1. Crosiers D, Theuns J, Cras P, Van Broeckhoven
C. Parkinson disease: Insights in clinical, genetic
and pathological features of monogenic disease
subtypes. J Chem Neuroanat. 2011; 42(2): 131-
141.
2. Ross CA, Tabrizi SJ. Huntington’s disease: From
molecular pathogenesis to clinical treatment.
Lancet Neurol. 2011; 10(1): 83-98.
3. Steward O, Schuman EM. Protein synthesis at
synaptic sites on dendrites. Annu Rev Neurosci.
2001; 24: 299-325.
4. Martin KC, Ephrussi A. mRNA localization:
Gene expression in the spatial dimension. Cell.
2009; 136(4): 719-730.
5. Jiang C, Schuman EM. Regulation and function
of local protein synthesis in neuronal dendrites.
Trends Biochem Sci. 2002; 27(10): 506-513.
6. Martin KC, Casadio A, Zhu H, Yaping E, Rose
JC, Chen M, et al. Synapse-specific, long-term
facilitation of aplysia sensory to motor synapses:
A function for local protein synthesis in memory
storage. Cell. 1997; 91(7): 927-938.
7. Klann E, Dever TE. Biochemical mechanisms
for translational regulation in synaptic plasticity.
Nat Rev Neurosci. 2004; 5(12): 931-942.
8. Schratt G. MicroRNAs at the synapse. Nat Rev
Neurosci. 2009; 10(12): 842-849.
9. Richter JD, Klann E. Making synaptic plasticity
and memory last: Mechanisms of translational
regulation. Genes Dev. 2009; 23(1): 1-11.
10. Wu L, Wells D, Tay J, Mendis D, Abbott MA,
Barnitt A, et al. CPEB-mediated cytoplasmic
polyadenylation and the regulation of experience-
dependent translation of alpha-CaMKII
mRNA at synapses. Neuron. 1998; 21(5): 1129-
1139.
11. Li LB, Bonini NM. Roles of trinucleotide-repeat
RNA in neurological disease and degeneration.
Trends Neurosci. 2010; 33(6): 292-298.
12. Ranum LP, Cooper TA. RNA-mediated neuromuscular
disorders. Annu Rev Neurosci. 2006;
29: 259-277.
13. Gatchel JR, Zoghbi HY. Diseases of unstable
repeat expansion: Mechanisms and common
principles. Nat Rev Genet. 2005; 6(10): 743-755.
14. Li LB, Yu Z, Teng X, Bonini NM. RNA toxicity
is a component of ataxin-3 degeneration in Drosophila.
Nature. 2008; 453(7198): 1107-1111.
15. Sobczak K, de Mezer M, Michlewski G, Krol J,
Krzyzosiak WJ. RNA structure of trinucleotide
repeats associated with human neurological diseases.
Nucleic Acids Res. 2003; 31(19): 5469-
5482.
16. Sobczak K, Krzyzosiak WJ. CAG repeats containing
CAA interruptions form branched hairpin
structures in spinocerebellar ataxia type 2 transcripts.
J Biol Chem. 2005; 280(5): 3898-3910.
17. Yu Z, Teng X, Bonini NM. Triplet repeat-derived
siRNAs enhance RNA-mediated toxicity in a
Drosophila model for myotonic dystrophy. PLoS
Genet. 2011; 7(3): e1001340. doi: 10.1371/journalpgen.
1001340.
18. Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg
MG, Byrne BJ, Thornton CA, et al. Recruitment
of human muscleblind proteins to (CUG)
(n) expansions associated with myotonic dystrophy.
EMBO J. 2000; 19(17): 4439-4448.
19. Bushati N, Cohen SM. MicroRNAs in neurodegeneration.
Curr Opin Neurobiol. 2008; 18(3):
292-296.
20. Hébert SS, De Strooper B. Alterations of the
microRNA network cause neurodegenerative
disease. Trends Neurosci. 2009; 32(4): 199-206.
21. Bartel DP. MicroRNAs: Target recognition and
regulatory functions. Cell. 2009; 136(2): 215-
233.
22. Filipowicz W, Bhattacharyya SN, Sonenberg N.
Mechanisms of post-transcriptional regulation
by micro-RNAs: Are the answers in sight? Nat
Rev Genet. 2008; 9(2): 102-114.
23. Vasudevan S, Tong Y, Steitz JA. Switching from
repression to activation: MicroRNAs can upregulate
translation. Science. 2007; 318(5858):
1931-1934.
24. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L,
Epstein EJ, et al. Combinatorial microRNA target
predictions. Nat Genet. 2005; 37(5): 495-500.
25. Lewis BP, Burge CB, Bartel DP. Conserved seed
pairing, often flanked by adenosines, indicates
that thousands of human genes are microRNA
targets. Cell. 2005; 120(1): 15-20.
26. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino
N, Aravin A, et al. A mammalian microRNA
expression atlas based on small RNA library
sequencing. Cell. 2007; 129(7): 1401-1414.
27. Sethupathy P, Collins FS. MicroRNA target
site polymorphisms and human disease. Trends
Genet. 2008; 24(10): 489-497.
28. Rademakers R, Eriksen JL, Baker M, Robinson
T, Ahmed Z, Lincoln SJ, et al. Common variation
in the miR-659 binding-site of GRN is a major
risk factor for TDP43-positive frontotemporal
dementia. Hum Mol Genet. 2008; 17(23): 3631-
3642.
29. Wang G, van der Walt JM, Mayhew G, Li YJ,
Züchner S, Scott WK, et al. Variation in the
miRNA-433 binding site of FGF20 confers
risk for Parkinson disease by overexpression of
alpha-synuclein. Am J Hum Genet. 2008; 82(2):
283-289.
30. Orr HT, Zoghbi HY. Trinucleotide repeat disorders.
Annu Rev Neurosci. 2007; 30: 575-621.
31. Bilen J, Liu N, Burnett BG, Pittman RN, Bonini
NM. MicroRNA pathways modulate polyglutamine-
induced neurodegeneration. Mol Cell.
2006; 24(1): 157-163.
32. Schaefer A, O’Carroll D, Tan CL, Hillman D,
Sugimori M, Llinas R, et al. Cerebellar neurodegeneration
in the absence of microRNAs. J
Exp Med. 2007; 204(7): 1553-1558.
33. Kim JM, Hong S, Kim GP, Choi YJ, Kim YK,
Park SS, et al. Importance of low-range CAG
expansion and CAA interruption in SCA2 Parkinsonism.
Arch Neurol. 2007; 64(10): 1510-
1518.
34. Karres JS, Hilgers V, Carrera I, Treisman J, Cohen
SM. The conserved microRNA miR-8 tunes
atrophin levels to prevent neurodegeneration in
Drosophila. Cell. 2007; 131(1): 136-145.
35. Waerner T, Gardellin P, Pfizenmaier K, Weith A,
Kraut N. Human RERE is localized to nuclear
promyelocytic leukemia oncogenic domains and
enhances apoptosis. Cell Growth Differ. 2001;
12(4): 201-210.
36. Wells RD, Ashizawa T, Eds. Genetic Instabilities
and Neurological Diseases, 2nd ed. Burlington,
MA: Academic Press, 2006.
37. Sakamoto N, Ohshima K, Montermini L, Pandolfo
M, Wells RD. Sticky DNA, a self-associated
complex formed at long GAA*TTC repeats
in intron 1 of the frataxin gene, inhibits transcription.
J Biol Chem. 2001; 276(29): 27171-27177.
38. Marsh JL, Walker H, Theisen H, Zhu YZ, Fielder
T, Purcell J. et al. Expanded polyglutamine
peptides alone are intrinsically cytotoxic and
cause neurodegeneration in Drosophila. Hum
Mol Genet. 2000; 9(1): 13-25.
39. Todd PK, Paulson HL. RNA-mediated neurodegeneration
in repeat expansion disorders. Ann
Neurol. 2010; 67(3): 291-300.
40. Liquori CL, Ricker K, Moseley ML, Jacobsen JF,
Kress W, Naylor SL, et al. Myotonic dystrophy
type 2 caused by a CCTG expansion in intron 1
of ZNF9. Science. 2001; 293(5531): 864-867.
41. Pascual M, Vicente M, Monferrer L, Artero R.
The Muscleblind family of proteins: An emerging
class of regulators of developmentally programmed
alternative splicing. Differentiation.
2006; 74(2-3): 65-80.
42. Mankodi A, Urbinati CR, Yuan QP, Moxley RT,
Sansone V, Krym M, et al. Muscleblind localizes
to nuclear foci of aberrant RNA in myotonic
dystrophy types 1 and 2. Hum Mol Genet. 2001;
10(19): 2165-2170.
43. Jin P, Duan R, Qurashi A, Qin Y, Tian D, Rosser
TC, et al. Pur alpha binds to rCGG repeats and
modulates repeat-mediated neurodegeneration in
a Drosophila model of fragile X tremor/ataxia
syndrome. Neuron. 2007; 55(4): 556-564.
44. Timchenko LT, Miller JW, Timchenko NA, De-
Vore DR, Datar KV, Lin L, et al. Identification
of a (CUG)n triplet repeat RNA-binding protein
and its expression in myotonic dystrophy.
Nucleic Acids Res. 1996; 24(22): 4407-4414.
45. White MC, Gao R, Xu W, Mandal SM, Lim
JG, Hazra TK, et al. Inactivation of hnRNP K
by expanded intronic AUUCU repeat induces
apoptosis via translocation of PKCdelta to mitochondria
in spinocerebellar ataxia 10. PLoS
Genet. 2010; 6(6): e1000984. doi: 10.1371/journal.
pgen. 1000984.
46. Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley
ML, Ebner TJ, et al. RNA gain-of-function
in spinocerebellar ataxia type 8. PLoS Genet.
2009; 5(8): e1000600. doi: 10.1371/journal.
pgen.1000600.
47. Sellier C, Rau F, Liu Y, Tassone F, Hukema RK,
Gattoni R, et al. Sam68 sequestration and partial
loss of function are associated with splicing
alterations in FXTAS patients. EMBO J. 2010;
29(7): 1248-1261.
48. Rudnicki DD, Holmes SE, Lin MW, Thornton
CA, Ross CA, Margolis RL. Huntington’s
disease--like 2 is associated with CUG repeatcontaining
RNA foci. Ann Neurol. 2007; 61(3):
272-282.
49. Batra R, Charizanis K, Swanson MS. Partners
in crime: Bidirectional transcription in unstable
microsatellite disease. Hum Mol Genet. 2010;
19(R1): R77-R82.
50. Zu T, Gibbens B, Doty NS, Gomes-Pereira M,
Huguet A, Stone MD, et al. Non-ATG-initiated
translation directed by microsatellite expansions.
Proc Natl Acad Sci USA. 2011; 108(1): 260-265.
51. van Eyk CL, McLeod CJ, O’Keefe LV, Richards
RI. Comparative toxicity of polyglutamine,
polyalanine and polyleucine tracts in Drosophila
models of expanded repeat disease. Hum Mol
Genet. 2012; 21(3): 536-547.
52. Lomen-Hoerth C, Anderson T, Miller B. The
overlap of amyotrophic lateral sclerosis and
frontotemporal dementia. Neurology. 2002;
59(7): 1077-1079.
53. La Spada AR, Taylor JP. Repeat expansion disease:
Progress and puzzles in disease pathogenesis.
Nat Rev Genet. 2010; 11(4): 247-258.
54. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann
M, Cairns NJ, et al. Pathological TDP-
43 distinguishes sporadic amyotrophic lateral
sclerosis from amyotrophic lateral sclerosis with
SOD1 mutations. Ann Neurol. 2007; 61(5): 427-
434.
55. Mackenzie IR, Neumann M, Bigio EH, Cairns
NJ, Alafuzoff I, Kril J, et al. Nomenclature for
neuropathologic subtypes of frontotemporal lobar
degeneration: Consensus recommendations.
Acta Neuropathol. 2009; 117(1): 15-18.
56. Boxer AL, Mackenzie IR, Boeve BF, Baker M,
Seeley WW, Crook R, et al. Clinical, neuroimaging
and neuropathological features of a new
chromosome 9p-linked FTD-ALS family. J Neurol
Neurosurg Psychiatry. 2011; 82(2): 196-203.
57. van Es MA, Veldink JH, Saris CG, Blauw HM,
van Vught PW, Birve A, et al. Genome-wide
association study identifies 19p13.3 (UNC13A)
and 9p21.2 as susceptibility loci for sporadic
amyotrophic lateral sclerosis. Nat Genet. 2009;
41(10): 1083-1087.
58. Van Deerlin VM, Sleiman PM, Martinez-Lage
M, Chen-Plotkin A, Wang LS, Graff-Radford
NR, et al. Common variants at 7p21 are associated
with frontotemporal lobar degeneration
with TDP-43 inclusions. Nat Genet. 2010; 42(3):
234-239.
59. Arocena DG, Iwahashi CK, Won N, Beilina A,
Ludwig AL, Tassone F, et al. Induction of inclusion
formation and disruption of lamin A/C
structure by premutation CGG-repeat RNA in
human cultured neural cells. Hum Mol Genet.
2005; 14(23): 3661-3671.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|