
GENE ALTERATIONS LEADING TO HYPOXANTHINE-
GUANINEPHOSPHORIBOSYL TRANSFERASE
DEFICIENCY: GENOTYPE-PHENOTYPE CORRELATION
Neychev VK*, Krastev SR, Mitev VI *Corresponding Author: Dr. Vladimir K. Neychev: Department of Chemistry and Biochemistry, Medical University, 2 Zdrave str., Sofia 1431, Bulgaria; Tel: +359-889-49-51-25 (personal), +359-2-51-66-528 (office); Fax: +359–2-952-02-07; E-mail: Neychev@dir.bg page: 51
|
RESULTS
Of the 123 different mutations, 92 were single base substitution. Of these, 67 resulted in single amino acid substitution (see Table 1), nine produced nonsense codons, resulting in premature termination of the protein translation, and 16 resulted in splicing errors. The remaining 31 mutations were 11 DNA insertions and 20 DNA deletions. Eighty-four cases were associated with clinical variant 4, 25 with clinical variant 1, 10 with clinical variant 3, and four with clinical variant 2.
The two deletions that do not affect the HPRT protein size, and resulted in the clinical variants 1 and 2, are HPRT (Japan 3) and HPRT (Illinois), respectively (see Table 4). Hypoxanthine-guanine phosphoribosy transherase (Illinois) occurred at the extreme 5’ end of the coding region and the HPRT (Japan 3) occurred at the 3’ end. The remaining deletions resulted in clinical variant 4.
Only one insertion resulted in the clinical variant 3 (see Table 5). It is a 3 bp addition at nt 429 that resulted in the introduction of an additional amino acid without disturbing the normal reading frame [3]. The remainder produced clinical variant 4.
Four mutations that resulted in splicing errors produced clinical variant 3. These are HPRT (JLY) [4], HPRT (LN11B) [5], HPRT (JC) [5] and HPRT (DB) [5], representing IVS-I,+1 (G®A), IVS-I,+1 (G®T), IVS-II,+1 (G®A) and IVS-V,+1 (G®A), respectively (see Table 2). The remainder produced clinical variant 4.
One nonsense mutation (HPRT GS) was reported as clinical variant 3 [6]. This is a C®T substitution in codon 170, resulting in Arg®Stop (see Table 3).
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|