
FAMILIAL NON-AUTOIMMUNE HYPERTHYROIDISM
IN FAMILY MEMBERS ACROSS FOUR GENERATIONS
DUE TO A NOVEL DISEASE-CAUSING VARIANT IN
THE THYROTROPIN RECEPTOR GENE Malej A, Avbelj Stefanija M, Bratanič N, Trebušak Podkrajšek K, *Corresponding Author: Associate Professor Katarina Trebušak Podkrajšek, Ph.D., Institute of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Slovenia. Tel: +386-
1-543-7669. Fax: +386-1-543-7641. E-mail: katarina.trebusakpodkrajsek@mf.uni-lj.si page: 87
|
REFERENCES
1. Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel
T, Greiner E, et al. Thyrocyte-specific Gq/
G11 deficiency impairs thyroid function and prevents
goiter development. J Clin Invest. 2007; 117(9):
2399-2407.
2. Duprez L, Parma J, Van Sande J, Allgeier A, Leclère J,
Schvartz C, et al. Germline mutations in the thyrotropin
receptor gene cause non-autoimmune autosomal
dominant hyperthyroidism. Nat Genet. 1994; 7(3):
396-401.
3. Kopp P, Van Sande J, Parma J, Duprez L, Gerber H,
Joss E, et al. Congenital hyperthyroidism caused by
a mutation in the thyrotropin-receptor gene. N Engl
J Med. 1995; 332(3): 150-154.
4. Stephenson A, Lau L, Eszlinger M, Paschke R. The
thyroid stimulating hormone receptor mutation database
update. Thyroid. 2020; 30(6): 931-935. 5. Paschke R, Niedziela M, Vaidya B, Persani L, Rapoport
B, Leclere J. 2012 European thyroid association
guidelines for the management of familial and
persistent sporadic non-autoimmune hyperthyroidism
caused by thyroid-stimulating hormone receptor germline
mutations. Eur Thyroid J. 2012; 1(3): 142-147.
6. Ferraz C, Paschke R. Inheritable and sporadic
non-autoimmune hyperthyroidism. Best Pract Res
Clin Endocrinol Metab [Internet]. 2017; 31(2):
265-275. (Available at http://dx.doi.org/10.1016/j.
beem.2017.04.005.)
7. Gozu HI, Lublinghoff J, Bircan R, Paschke R. Genetics
and phenomics of inherited and sporadic nonautoimmune
hyperthyroidism. Mol Cell Endocrinol.
2010; 322(1-2): 125-134.
8. Führer D. Constitutive TSH receptor activation as
a hallmark of thyroid autonomy. Endocrine. 2020;
68(2): 274-278.
9. Human Gene Mutation Database (HGMD®) (http://
www.hgmd.cf.ac.uk/).
10. Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu
B, Hart J, et al. ClinVar: Improvements to accessing
data. Nucleic Acids Res. 2020; 48(D1): D835-D844.
doi: 10.1093/nar/gkz972.
11. Karczewski KJ, Francioli LC, Tiao G, Cummings
BB, Alföldi J, Wang Q, et al. The mutational constraint
spectrum quantified from variation in 141,456
humans. Nature. 2020; 581(7809): 434-443. doi:
10.1038/s41586- 020-2308-7. Epub 2020 May 27.
12. Ng PC, Henikoff S. SIFT: Predicting amino acid
changes that affect protein function. Nucleic Acids
Res. 2003; 31(13): 3812-3814.
13. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE,
Gerasimova A, Bork P, et al. A method and server
for predicting damaging missense mutations. Nat
Methods. 2010; 7(4):248-249.
14. Schwarz JM, Cooper DN, Schuelke M, Seelow D.
MutationTaster2: Mutation prediction for the deepsequencing
age. Nat Methods. 2014; 11(4): 361-362.
15. Rentzsch P, Witten D, Cooper GM, Shendure J,
Kircher M. CADD: Predicting the deleteriousness
of variants throughout the human genome. Nucleic
Acids Res. 2019; 47(D1): D886-D894.
16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-
Foster J, et al. Standards and guidelines for the interpretation
of sequence variants: A joint consensus
recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular
Pathology. Genet Med. 2015; 17(5): 405-424.
17. Fuhrer D, Warner J, Sequeira M, Paschke R, Gregory
J, Ludgate M. Novel TSHR germline mutation
(Met463 Val) masquerading as Graves’ disease in a
large Welsh kindred with hyperthyroidism. Thyroid.
2000; 10(12): 1035-1041.
18. De Roux N, Polak M, Couet J, Leger J, Czernichow
P, Milgrom E, et al. A neomutation of the thyroidstimulating
hormone receptor in a severe neonatal
hyper-thyroidism. J Clin Endocrinol Metab. 1996;
81(6): 2023-2026.
19. Lavard L, Sehested A, Jacobsen BB, Muller J, Perrild
H, Feldt-Rasmussen U, et al. Long-term follow-up of
an infant with thyrotoxicosis due to germline mutation
of the TSH receptor gene (Met453Thr). Horm
Res. 1999; 51(1): 43-46.
20. Nakamura A, Morikawa S, Aoyagi H, Ishizu K,
Tajima T. A Japanese family with nonautoimmune
hyperthyroidism caused by a novel heterozygous thyrotropin
receptor gene mutation. Pediatr Res. 2014;
75(6): 749-753.
21. Supornsilchai V, Sahakitrungruang T, Wongjitrat N,
Wacharasindhu S, Suphapeetiporn K, Shotelersuk
V. Expanding clinical spectrum of non-autoimmune
hyperthyroidism due to an activating germline mutation,
p.M453 T, in the thyrotropin receptor gene. Clin
Endocrinol (Oxf). 2009; 70(4): 623-628.
22. Lueblinghoff J, Mueller S, Sontheimer J, Paschke R.
Lack of consistent association of thyrotropin receptor
mutations in vitro activity with the clinical course of
patients with sporadic non-autoimmune hyperthyroidism.
J Endocrinol Invest. 2010; 33(4): 228-233.
23. Quellari M, Desroches A, Beau I, Beaudeux E, Misrahi
M. Role of cleavage and shedding in human
thyrotropin receptor function and trafficking. Eur J
Biochem. 2003; 270(17): 3486-3497.
24. Osuna PM, Udovcic M, Sharma MD. Hyperthyroidism
and the heart. Methodist DeBakey Cardiovasc J.
2017; 13(2): 60-63.
25. Mitchell JE, Hellkamp AS, Mark DB, Anderson J,
Johnson GW, Poole JE, et al. Thyroid function in
heart failure and impact on mortality. JACC Hear
Fail. 2013; 1(1): 48-55.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|