
THE UTILITY OF WHOLE EXOME SEQUENCING
IN DIAGNOSING PEDIATRIC NEUROLOGICAL DISORDERS Muthaffar OY *Corresponding Author: Osama Y. Muthaffar, M.D., Department of Pediatrics, King Abdulaziz
University, Jeddah, PO Box 80215, Jeddah 21589, Kingdom of Saudi Arabia. Tel.: +96-12-640-1000
(ext. 20208). Fax: 996-12-640-3975. E-mail: oymuthaffar@kau.edu.sa; osamam@hotmail.com page: 17
|
REFERENCES
1. van Nimwegen KJM, Schieving JH, Willemsen
MAA, Veltman JA, van der Burg S, van der Wilt GJ,
et al. The diagnostic pathway in complex paediatric
neurology: A cost analysis. Eur J Paediatr Neurol.
2015; 19(2): 233-239.
2. Fogel BL, Satya-Murti S, Cohen BH. Clinical exome
sequencing in neurologic disease. Neurol Clin Pract.
2016; 6(2): 164-176.
3. Kong S, Lee I, Liu X, Hirschhorn JN, Mandl KD.
Measuring coverage and accuracy of whole-exome
sequencing in clinical context. Genet Med. 2018;
20(12): 1617-1626.
4. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor
HK, Dent KM, et al., Exome sequencing identifies
the cause of a mendelian disorder. Nat Genet. 2010;
42(1): 30-35.
5. el-Hazmi MA, al-Swailem AR, Warsy AS, al-Swailem
AM, Sulaimani R, al-Meshari AA. Consanguinity
among the Saudi Arabian population. J Med Genet.
1995; 32(8): 623-626.
6. al Husain M, al Bunyan M. Consanguineous marriages
in a Saudi population and the effect of inbreeding
on prenatal and postnatal mortality. Ann Trop
Paediatr. 1997; 17(2): 155-160.
7. Kahrizi K, Hu H, Hosseini M, Kalscheuer VM, Fattahi
Z, Beheshtian M, et al. Effect of inbreeding on
intellectual disability revisited by trio sequencing.
Clin Genet. 2019; 95(1): 151-159.
8. Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-
Dosari MS, Alzahrani F, et al. Accelerating novel
candidate gene discovery in neurogenetic disorders
via whole-exome sequencing of prescreened multiplex
consanguineous families. Cell Rep. 2015; 10(2):
148-161.
9. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis
A, Ward PA, et al. Clinical whole-exome sequencing
for the diagnosis of Mendelian disorders. N Engl J
Med. 2013; 369(16): 1502-1511.
10. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S,
Quintero-Rivera F, et al. Clinical exome sequencing
for genetic identification of rare Mendelian disorders.
JAMA. 2014; 312(18): 1880-1887.
11. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding
Y, et al. Molecular findings among patients referred
for clinical whole-exome sequencing. JAMA. 2014;
312(18): 1870-1879.
12. Alfares A, Alfadhel M, Wani T, Alsahli S, Allu-haydan
I, Al Mutairi F, et al. A multicenter clinical exome
study in unselected cohorts from a consanguineous
population of Saudi Arabia demonstrated a high diagnostic
yield. Mol Genet Metab. 2017; 121(2): 91-95.
13. Monies D, Abouelhoda M, AlSayed M, Alhassnan Z,
Alotaibi M, Kayyali H, et al. The landscape of genetic
diseases in Saudi Arabia based on the first 1000 diagnostic
panels and exomes. Hum Genet. 2017; 136(8):
921-939.
14. Al-Shamsi A, Hertecant JL, Souid AK, Al-Jasmi FA.
Whole exome sequencing diagnosis of inborn errors
of metabolism and other disorders in United Arab
Emirates. Orphanet J Rare Dis. 2016; 11(1): 94.
15. Fahiminiya S, Almuriekhi M, Nawaz Z, Staffa A, Lepage
P, Ali R, et al. Whole exome sequencing unravels
disease-causing genes in consanguineous families in
Qatar. Clin Genet. 2014; 86(2): 134-141.
16. Makrythanasis P, Nelis M, Santoni FA, Guipponi M,
Vannier A, Bena F, et al. Diagnostic exome sequencing
to elucidate the genetic basis of likely recessive
disorders in consanguineous families. Hum Mutat.
2014; 35(10): 1203-1210.
17. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C,
Evans JP, et al., Recommendations for reporting of
secondary findings in clinical exome and genome
sequencing, 2016 update (ACMG SF v2.0): A policy
statement of the American college of medical genetics
and genomics. Genet Med. 2017; 19(2): 249-255.
18. Monies D, Abouelhoda M, Assoum M, Moghrabi N,
Rafiullah R, Almontashiri N, et al. Lessons learned
from large-scale, first-tier clinical exome sequencing
in a highly consanguineous population. Am J Hum
Genet. 2019; 104(6), 1182–1201.
19. Charng W-L, Karaca E, Coban Akdemir Z, Gambin
T, Atik MM, Gu S, et al. Exome sequencing in mostly
consanguineous Arab families with neurologic disease
provides a high potential molecular diagnosis
rate. BMC Med Genomics. 2016; 9: 42.
20. Sawyer SL, Hartley T, Dyment DA, Beaulieu CL,
Schwartzentruber J, Smith A, et al. Utility of wholeexome
sequencing for those near the end of the diagnostic
odyssey: Time to address gaps in care. Clin
Genet. 2016; 89(3): 275-284.
21. Beaulieu CL, Majewski J, Schwartzentruber J, Samules
ME, Fernandez BA, Bernier FP, et al. FORGE
Canada Consortium: Outcomes of a 2-year national
rare-disease gene-discovery project. Am J Hum Genet.
2014; 94(6): 809-817.
22. Mu W, Schiess N, Orthmann-Murphy JL, El-Hattab
AW. The utility of whole exome sequencing in
diagnosing neurological disorders in adults from a highly consanguineous population. J Neurogenet.
2019; 33(1): 21-26.
23. Vissers LELM, van Nimwegen KJM, Schieving JH,
Kamsteeg EJ, Kleefstra T, Yntema HG, et al. A clinical
utility study of exome sequencing versus conventional
genetic testing in pediatric neurology. Genet
Med. 2017; 19(9): 1055-1063.
24. Dixon-Salazar TJ, Silhavy JL, Udpa N, Schroth J,
Bielas S, schaffer AE, et al. Exome sequencing can
improve diagnosis and alter patient management. Sci
Trans Med. 2012; 4(138): 138ra78.
25. Zhang X. Exome sequencing greatly expedites the
progressive research of Mendelian diseases. Front
Med. 2014; 8(1): 42-57.
26. Yavarna T, Al-Dewik N, Al-Mureikhi M, Ali R, Al-
Mesaifri F, Mahmoud L, et al. High diagnostic yield
of clinical exome sequencing in Middle Eastern patients
with Mendelian disorders. Hum Genet. 2015;
134(9): 967-980.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|