
GENETIC SPECTRUM OF NEONATAL DIABETES Kocova M *Corresponding Author: Mirjana Kocova, M.D., Ph.D., Medical Faculty, University Cyril and
Methodius, 50 Divizija No. 6, 1000, Skopje, Republic of Macedonia. Tel. +389-7024-2694. Fax:
+389-2317-6167. E-mail: mirjanakocova@yahoo.com page: 5
|
REFERENCES
1. Chiang JL, Maahs DM, Garvey KC, Hood KK, Laffel
LM, Weinzimer SA, et al. Type 1 diabetes in children
and adolescents: A position statement by th American
Diabetes Association. Diabetes Care. 2018; 41(9):
2026- 2044.
2. Tosur M, Geyer SM, Rodriguez H, Libman I, Baidal
DA, Redondo MJ; Type 1 Diabetes TrialNet Study
Group. Ethnic differences in progression of islet autoimmunity and type 1 diabetes in relatives at risk.
Diabetologia. 2018; 61(9): 2043-2053.
3. Patterson CC, Dahlquist G, Soltész G, Green A; EURODIAB
ACE Study Group. Variation and trends
in the incidence of childhood diabetes in Europe.
Lancet. 2000; 355(9207):873-876.
4. Roark CL, Anderson KM, Simon LJ, Schuyler RP,
Aubrey MT, Freed BM. Multiple HLA epitopes contribute
to type 1 diabetes susceptibility. Diabetes.
2014; 63(1): 323-331.
5. Kocova M, Blagoevska M, Bogoevski M, Konstantinova
M, Dorman J, Trucco M. HLA class II molecular
typing in an European Slavic population with a
low incidence of insulin-dependent diabetes mellitus.
Tissue Antigens. 1995; 45(3): 216-219.
6. Platz P, Jakobsen BK, Morling N, Ryder LP, Svejgaard
A, Thomsen M, et al.. HLA-D and -DR antigens
in genetic analysis of insulin dependent diabetes mellitus.
Diabetologia. 1981; 21(2): 108-115.
7. Pociot F, Lenmark A. Genetic risk factors for type 1
diabetes. Lancet. 2016; 387(10035): 2331-2339.
8. Noble JA, Valdes AM. Genetics of the HLA region
in the prediction of type 1 diabetes. Curr Diab Rep.
2011; 11(6): 532-542.
9. Patterson CC, Harjutsalo V, Rosenbauer J, Neu A,
Cinek O, Skrivarhaug T, et al. Trends and cyclical
variation in the incidence of childhood type 1 diabetes
in 26 European centres in the 25 year period 1989-
2013: A mul-ticentre prospective registration study.
Diabetologia. 2019; 62(3): 408-417.
10. Qiu YH, Deng FY, Li MJ, Lei SF. Identification of
novel risk genes associated with type 1 diabetes mellitus
using a genome-wide gene-based association
analysis. J Diabetes Investig. 2014; 5(6): 649-656.
11. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2
diabetes: Pathogenesis and treatment. Lancet. 2008;
371(9631): 2153-2156.
12. Unger RH. Reinventing type 2 diabetes: Pathogenesis,
treatment, and prevention. JAMA. 2008; 299(10):
1185-1187.
13. Fendler W, Borowiec M, Baranowska-Jazwiecka A,
Szadkowska A, Skala-Zamorowska E, Deja G, et al.
Prevalence of monogenic diabetes amongst Polish
children after a nationwide genetic screening campaign.
Diabetologia. 2012; 55(10): 2631-2635.
14. Irgens HU, Molnes J, Johansen BB, Rindal M, Skivarhaug
T, Undlien D, et al. Prevalence of monogenic
diabetes in the population-based Norwegian Childhood
Diabetes Registry. Diabetologia. 2013; 56(7):
1512-1519.
15. Pihoker C, Gilliam LK, Ellard S, Dabelea D, Davis
C, Dolan LM, et al. Prevalence, characteristics, and
clinical diagnosis of maturity onset diabetes of the
young due to mutations HNF1A, HNF4A, and glucokinase
results from the SEARCH for Diabetes in
Youth. J Clin Endocrinol Metab. 2013; 98(10): 4055-
4062.
16. Johanson BB, Irgens HU, Molnes J, Sztromwasser
P, Aukrust I, Juliuson PB, et al. Targeted next generation
sequencing reveals MODY in up to 6.5% of
antibody-negative diabetes cases listed in the Norwegian
Childhood Diabetes Registry. Diabetologia.
2017; 60(4): 625-635.
17. Delvecchio M, Mozzillo E, Salzano G, Iafusco D,
Frontino G, Patera PI, et al. Monogenic diabetes accounts
for 6.3 of cases referred to 15 Italian pediatric
diabetes centers during 2007 to 2012. J Clin Endocrinol
Metab. 2017; 102(6): 1826-1834.
18. Shepherd M, Shields B, Hammersley S, Hudson M,
McDonald T, Colclough K, et al. Systematic population
screening, using biomarkers and genetic testing
identifies 2.5% of the UK pediatric diabetes population
with monogenic diabetes. Diabetes Care. 2016;
39(11): 1879-1888.
19. Hattersley AT, Greenley AW, Polak M, Rubio-Cabezas
O, Njolstad PR, Mlynarski W, et al. ISPAD
Clinical Practice Consensus Guidelines 2018: The
diagnosis and management of monogenic diabetes
in children and adolescents. Pediatr Diabetes. 2018;
19(Suppl 27): 47-63.
20. Nansseu JRN, Ngo-Um SS, Balti EV. Incidence,
prevalence and genetic determinants of neonatal diabetes
mellitus: A systematic review and meta-analysis
protocol. Syst Rev. 2016; 5(1): 188.
21. Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley
NA. Human pancreas development. Development.
2015; 142(18): 3126-3137.
22. Servitja JM, Ferrer J. Transcriptional networks controlling
pancreatic development and beta cell function.
Diabetologia. 2004; 47(4): 597-613.
23. Polak M, Cavé H. Neonatal diabetes mellitus: A disease
linked to multiple mechanisms. Orphanet J Rare
Dis. 2007; 2: 12.
24. Aguilar-Bryan L, Bryan J. Neonatal diabetes mellitus.
Endocr Rev. 2008; 29(3); 265-291.
25. Petruzelkova L, Dusatkova P, Cinek O, Sumnik Z,
Pruhova S, Hardsky O, et al. Substantial proportion
of MODY among multiplex families participating in
a Type 1 diabetes prediction programme. Diabetic
Med. 2016; 33(12): 1712-1716. 26. Ellard S, Lango Allen H, De Franco E, Flanagan SE,
Hysenaj G, Colclough K, et al. Improved genetic
testing for monogenic diabetes using targeted nextgeneration
sequencing. Diabetologia. 2013; 56(9):
1958-1963.
27. Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh
R, Villarasa N, et al. Spectrum of mutations
in monogenic diabetes genes identified from highthroughput
DNA sequencing of 6888 individuals.
BMC Medicine. 2017; 15(1): 213.
28. Globa E, Zelinska N, Mackay DJG, Temple K,
Houghton JAL, Hattersley AT, et al. Neonatal diabetes
in Ukraine: Incidence, genetic, clinical phenotype
and treatment. J Pediatr Endocrinol Metab. 2015;
28(11-12): 1279-1286.
29. Rubio-Cabezas O, Ellard S. Diabetes mellitus in
neonates and infants: Genetic heterogeneity, clinical
approach to diagnosis, and therpeutic options. Horm
Res Paediatr. 2013; 80(3): 137-146.
30. Nansseu JR, Ngo-Um SS, Balti EV. Incidence, prevalence
and genetic determinants of neonatal diabetes
mellitus: A systematic review and meta-analysis protocol.
Syst Rev. 2016; 5(1): 188.
31. Nagashima K, Tanaka D, Inagaaki N. Epidemiology,
clinical chracteristics, and genetic etiology of
neonatal diabetes in Japan. Pediatr Int. 2017; 59(2):
129-133.
32. Huopio H, Miettinen PJ, Ilonen J, Nykanen P, Veijola
R, Keskinen P, et al. Clinical, genetic, and biochemical
characteristics of early-onset diabetes in the
Finnish population. J Clin Endocrinol Metab. 2016;
101(8): 3018-3026.
33. Cao B, Gong C, Wu D, Lu C, Liu F, Liu X, et al.
Genetic analysis and follow-up of 25 neonatal diabetes
mellitus patients in China. J Diabetes Res. 2016;
2016: 6314368.
34. Blanco Lemelman M, Letourneau L, Greeley SAW.
Neonatal diabetes mellitus: An update on diagnosis
and managment. Clin Perinatol. 2018; 45(1): 41-59.
35. Russo L, Iafusco D, Brescianini S, Nocerino V, Bizzarri
C, Toni S, et al. Permanent diabetes mellitus
during the first year of life: Multiple gene screening
in 54 patients. Diabetologia. 2011; 54(7): 1693-1701.
36. von Mühlendah KE, Herkenhoff H. Long-term course
of neonatal diabetes. N Engl J Med. 1995; 333(11):
704-708.
37. Polak M, Cavé H. Neonatal diabetes mellitus: A disease
linked to multiple mechanisms. Orphanet J Rare
Dis. 2007; 2: 12.
38. Fösel S. Transient and permanent neonatal diabetes.
Eur J Pediatr. 1995; 154(12): 944-948.
39. Temple IK, Shield JPH. Transient neonatal diabetes,
a disorder of imprinting. J Med Genet. 2002; 39(12):
872-875.
40. Naylor RN, Greeley SAW, Bell IGI, Philipson LH.
Genetics and pathophysiology of neonatal diabetes
mellitus. J Diabetes Investig. 2011; 2(3): 158-169.
41. Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson
DO, Shield JP. Transient neonatal diabetes:
widening the understanding of the etiopathogenesis
of diabetes. Diabetes. 2000; 49(8): 1359-1366.
42. Gardner RJ, Mackay DJ, Mungall AL, Polychronakos
C, Siebert R, Shield JP, et al. An imprinted locus
associated with transient neonatal diabetes mellitus.
Hum Mol Genet. 2000; 9(4): 589-596.
43. Docherty LE, Kabwama S, Lehman A, Hawke E, Harrison
L, Flanagan SF, et al. Clinical presentation of
6q24 transient neonatal diabetes mellitus (6q24 TNDM)
and genotype-phenotype correlation in an international
cohort of patients. Diabetologia. 2013; 56(4): 758-762.
44. Hermann R, Laine AP, Johansson C, Niederland T,
TokarskaL, Dziatkowiak H, et al. Transient but not
permanent neonatal diabetes mellitus is associated
with paternal isodisomy of chromosome 6. Pediatrics.
2000; 105(1): 49-52.
45. Whiteford ML, Narendra A, White MP, Cooke A,
Wilkinson AG, Robertson KJ, et al. Paternal uniparental
disomy for chromosome 6 causes transient
diabetes mellitus. J Med Genet. 1997; 34(2): 167-168.
46. Mackay D, Bens S, Perez de Nanclares G, Siebert R
Temple K. Clinical utility gene card for: Transient
neonatal diabetes mellitus, 6q24-related. Eur J Hum
Genet. 2014; 22(9): doi: 10.1038/ejhg.2014.27. Epub
2014 Feb 26.
47. Mackay DJ, Boonen SE, Clayton-Smith J, Goodship
J, Hahnemann JMD, Kant SG, et al. A maternal
hypo-methylation syndrome presenting as transient
neonatal diabetes mellitus. Hum Genet. 2006; 120(2):
262-269.
48. Varrault A, Ciani E, Apiou F, Bilanges A, Hoffmann
A, Pantaloni C, et al. hZAC encodes a zink finger
protein with antiproliferative properties and maps to
a chromosomal region frequently lost in cancer. Natl
Acad Sci USA. 1998; 95(15): 8835-8840.
49. Touati A, Errea-Dorronsoro J, Nouri S, Halleb Y,
Pereda A, Mahdhaoui N, et al. Transient neonatal
diabetes mellitus and hypomethylation at additional
imprinted loci: Novel ZFP57 mutation and review of
the literature. Acta Diabetol. 2019; 56(3):301-307. 50. Ma D, Shield JPH, Dean W, Leclerc I, Knauf C,
Burcelin R, et al. Impaired glucose homeostasis in
transgenic mice expressing the human transient neonatal
diabetes mellitus locus, TNDM. J Clin Invest.
2004; 114(3): 339-348.
51. Sovik O, Aagenaes O, Eide SA, Mackay D, Temple
IK, Molven A, et al. Familial occurrence of neonatal
diabetes with duplications in chromosome 6q24:
Treatment with and 40-yr follow-up. Pediatr Diabetes.
2012; 1(3): 155-162.
52. Carmody D, Beca FA, Bell CD, Hwang JD, Dickens
JT, Devine NA, et al. Role of noninsulin therapies
alone or in combination in chromosome 6q24-related
transient neonatal diabetes: Sulfonylurea improves
but does not always normalize insulin secretion. Diabetes
Care. 2015; 38(6): e86-e87.
53. Yorifuji T, Kurokawa K, Mamada M, Imai T, Kawai
M, Nishi Y, et al. Neonatal diabetes mellitus and neonatal
polycystic, dysplastic kidneys: Phenotypically
discordant recurrence of a mutation in the hepatocyte
nuclear factor-1beta gene due to germline mosaicism.
J Clin Endocrinol Metab. 2004; 89(6): 2905-2908.
54. Garin I, Edghill EL, Akerman I, Rubio-Cabezas, O,
Rica I, Locke JM, et al. Recessive mutations in INS
gene result in neonatal diabetes through reduced insulin
biosynthesis. Proc Natl Acad Sci USA. 2010;
107(7): 3105-3110.
55. Besser REJ, Flanagan SE, Mackay DGJ, Temple IK,
Shepherd MH, Shields BM, et al. Prematurity and
genetic testing for neonatal diabetes. Pediatrics. 2016;
138(3): 10.1542/peds.2015-3926 e20153926. doi: 10.
1542/peds.2015-3926. Epub 2016 Aug 18.
56. Stoy J, Edghill EL, Flanagan SF, Ye H, Paz VP, Pluzhnikov
A, et al. Insulin gene mutations as a cause
of permanent neonatal diabetes. Proc Natl Acad Sci
USA. 2007; 104(38): 15040-15044.
57. John SA, Weiss JN, Xie LH, Ribalet B. Molecular
mechanism for ATP-dependent closure of the K+
channel Kir6.2. J Physiol. 2003; 552(Pt 1): 23-34.
58. De Franco E, Flanagan SF, Houghton JAL, Lango
Allen H, Mackay DJG, Temple IK, et al. The effect
of early, comprehensive genomic testing on clinical
care in neonatal diabetes: an international cohort
study. Lancet. 2015; 386(9997): 957-963.
59. Tinker A, Aziz Q, Li Y, Specterman M. ATP-Sensitive
potassium channels and their physiological and
pathophysiological roles. Compr Physiol. 2008; 8(4):
1463-1511.
60. Gloyn AL, Pearson ER, Antcliff LF, Proks P, Bruining
GJ, Slingerland AS, et al. Activating mutations in the
gene encoding the ATP-sensitive potassium-channel
subunit Kir 6.2 and permanent neonatal diabetes. N
Engl J Med. 2004; 350(18): 1838-1849.
61. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow
P, Scharfmann R, et al. Activating mutations
in the ABCC8 gene in neonatal diabetes mellitus. N
Eng J Med. 2006; 355(5): 456-466.
62. Achroft FM. ATP-sensitive potassium channelopathies:
Focus on insulin secretion. J Clin Invest. 2005;
115(8): 2047-2058.
63. Flanagan SF, Edghill EL, Glyon AL, Ellard S, Gattersley
AT. Mutations in KCNJ11, which encodes Kir6.2,
are a common cause of diabetes diagnosed in the first
6 months of life, with the phenotype determined by
genotype. Diabetologia. 2006; 49(6): 1190-1197.
64. Vaxillaire M, Populaire C, Busiah K, Cave H, Gloyn
AL, Hattersley AT, et al. Kir 6.2 mutations are a common
cause of permanent neonatal diabetes in a large
cohort of French patients. Diabetes. 2004; 53(10):
2719-2722.
65. De Franco E, Saint Martin C, Brusgaard K, Knight
Johnson AE, Aguilar-Bryan L, Bowman P, et al. Upadate
of variants identified in the pancreatic β-cell KATP
channel genes KCNJ11 and ABCC8 in individuals
with congenital hyperinsulinism and diabetes. Hum
Mutat. 2020; 41(5): 884-905.
66. Proks P, Arnold AL, Bruining J, Girard C, Flanagan
SE, Larkin B, et al. A heterozygous activating mutation
in the sulphonylurea receptor SUR1 (ABCC8)
causes neonatal diabetes. Hum Mol Genet. 2006;
15(11): 1793-1800.
67. Flanagan SF, Patch AM, Mackay DJ, Edghill EL,
Gloyn AL, Robinson D, et al. Mutations in ATP sensitive
K+ channel genes cause transient neonatal diabetes
and permanent diabetes in childhood or adulthood.
Diabetes. 2007; 56(7): 1930-1937.
68. Letoumeau LR, Carmody D, Wriblewski K, Denson
AM, Sanyoura M, Rochelle N, et al. Diabetes presentation
in infancy: High risk of diabetic ketoacidosis.
Diabetes Care. 2017; 40(10): e147-e148.
69. Dahl A, Kumar S. Recent advances in neonatal diabetes.
Diabetes, metabolic syndrome and obesity:
Targets and therapy. Diabetes Metab Syndr Obes.
2020; 13: 355-364.
70. Gloyn AL, Diatloff-Zito C, Edghill EL, Bellanné-
Chantelot C, Nivot S, Coutan R, et al. KCNJ11 activating
mutations are associated with developmental
delay, epilepsy and neonatal diabetes syndrome and
other neurological features. Eur J Hum Genet. 2006;
14(7): 824-830. 71. Hattersley AT, Ashcroft FM. Activating mutations
in Kir6.2 and neonatal diabetes: New clinical syndromes,
new scientific insights, and new therapy.
Diabetes. 2005; 54(9): 2503-2513.
72. Bowman P, Broadbridge E, Knight BA, Pettit L, Flanagan
SE, Reville M, et al. Psychiatric morbidity in
children with KCNJ 11 neonatal diabetes. Diabet
Med. 2016; 33(10): 1387-1391.
73. Clark RH, McTaggart JS, Webster R, Knight BA, Pettit
L, Flanagan SE, et al. Muscle disfunction caused by a
KATP channel mutation in neonatal diabetes is neuronal
in origin. Science. 2010; 329(5990): 458-461.
74. Carmody D, Pastore AN, Landmeier KA, Letourneau
LR, Martin R, Hwang JL, et al. Patients with KCNJ11-
related diabetes frequently have neuropsychological
impairment compared with sibling controls.
Diabet Med. 2016; 33(10): 1380-1386.
75. Pearson ER, Flechtner I, Njolstad PR, Malecki MT,
Flanagan SF, Larkin B, et al. Switching from insulin
to oral sulfonylureas in paients with diabetes due to
6.2 mutations. N Engl J Med. 2006; 355(5): 467-477.
76. Rafiq M, Flanagen SE, Patch AM, Shields BM, Ellard
S, Hattersley AT, et al. Effective treatment with
oral sulfonylureas in patients with diabetes due to
sulfonylurea receptor 1 (SUR1) mutations. Diabetes
Care. 2008; 31(2): 204-209.
77. Beltrand J, Elie C, Busiah K, Fournier E, Boddaert
N, Bahi-Buisson N, et al.; GlidKir Study Group. Erratum.
Sulfonylurea therapy benefits neurological
and psychomotor functions in patients with neonatal
diabetes owing to potassium channel mutations. Diabetes
Care. 2015; 38: 2033-2041.
78. Bowman O, Sulen A, Barbetti F, Beltrand J, Svalastoga
P, Codner E, et al. Effectiveness and safety of
long-term treatment with sulfonylureas in patients
with neonatal diabetes due to KCNJ11 mutations:
An international cohort study. Lancet Diabetes Endocrinol.
2018; 6(8): 637-646.
79. Torbjornsdotter T, Marosvari-Barna T, Henckel E,
Corrias E, Norgren M, Janson A. Successful treatment
of a cohort of infants with neonatal diabetes using insulin
pumps including data on genetics and estimated
incidence. Acta Paediatr. 2020; 109(6): 1131-1137.
80. Greeley SA, Zielinski MC, Poudel A, Ye H, Berry S, Taxy
JB, et al. Preservation of reduced numbers of insulin-positive
cells in sulfonylurea-unresponsive KCNJ11-related
diabetes. J Clin Endocrinol Metab. 2017; 102(1): 1-5.
81. Taberner P, Flanagan SE, Mackay DJ, Ellard S, Taverna
MJ, Ferraro M. Clinical and genetic features of
Argentinian children with diabetes-onset before 12
months of age: Successful transfer from insulin to
oral sulfonylurea. Diabetes Res Clin Pract. 2016; 117:
104-110. Doi.org/10.1016/j.diabres 2016.04.005.
82. Polak M, Dechaume A, Cavé H, Nimri R, Crosnier
H, Sulmont V, et al.; French ND (neonatal diabetes)
Study Group. Heterozygous missense mutations in
the insulin gene are linked to permanent diabetes appearing
in the neonatal period or in early infancy: A
report from the French ND (neonatal diabetes) study
group. Diabetes. 2008; 57(4): 1115-1119.
83. Edghill EL, Flanagan SE, Patch AM, Boustred C,
Parrish A, Shields B, et al.; Neonatal Diabetes International
Collaborative Group. Insulin mutation
screening in 1044 patients with diabetes: Mutations in
the INS gene are a common cause of neonatal diabetes
but a rare cause of diabetes diagnosed in childhood
or adulthood. Diabetes. 2008; 57(4): 1034-1042.
84. Fu J, Wang T, Li M, Xiao X. Identification of insulin
gene variants in patients with neonatal diabetes in the
Chinese population. J Diabetes Investig. 2020; 11(3):
578-584.
85. Matschinsky FM. Glucokinase, glucose homeostasis
and diabetes mellitus. Curr Diab Rep. 2005; 5(3):
171-176. (Author: please see reference below)
86. Lin DC, Huang CY, Ting WH, Lo FS, Lin CL, Yang
HW, et al. Mutations in glucokinase and other genes
detected in neonatal and type 1B diabetes patient
using whole exome sequencing may lead to diseasecausing
changes in protein activity. Biochim Biophys
Acta. 2019; 1865(2): 428-433.
87. Njølstad PR, Søvik O, Cuesta-Muñoz A, Bjørkaug L,
Massa O, Barbetti F, et al. Neonatal diabetes mellitus
due to complete glucokinase deficiency. N Engl J
Med. 2001; 344(21): 1588-1592.
88. Reis AF, Kannengiesser C, Jennane F, Manna TD,
Cheurfa N, Oudin C, et al. Two novel mutations in
the EIF2AK3 gene in children with Wolcott-Rallison
syndrome. Pediatr Diabetes. 2011; 12(3 Pt 1): 187-191.
89. Habener JF, Kemp DM, Thomas MK. Minireview:
Transcriptional regulation in pancreatic development.
Endocrinology. 2005; 146(3): 1025-1034.
90. Thornton CM, Carson DJ, Stewart FJ. Autopsy findings
in Wolcott-Rallison syndrome. Pediatr Pathol
Lab Med. 1997; 17(3): 487-496.
91. Sümegi A, Hendrik Z, Gáll T, Felszeghy E, Szakszon
K, Antal-Szalamas P, et al. A novel splice site
indel alteration in the EIF2AK3 gene is responsible
for the first cases of Wolcott-Rallison syndrome in
Hungary. BMC Med Genet. 2020; 21(1): 61. doi:
10.1186/s12881-020- 0985-6. 92. Welters A, Meissner T, Konrad K, Freiberg C, Warnicke
K, Judmaier S, et al. Diabetes management in
Wolcott-Rallison syndrome: analysis from the German/
Austrian DPV database. Orphanet J Rare Dis.
2020; 15(1): 100. doi: 10.1186/s13023-020-01359-y.
93. Iver S, Korada M, Rainbow L, Kirk J, Brown RM,
Shaw N, et al. Wolcott-Rallison syndrome: A clinical
and genetic study of three children, novel mutation in
EIF2AK3 and a review of the literature. Acta Paediatr.
2004; 93(9): 1195-1201.
94. Barrett TG, Bundey SE, Macleod AF. Neurodegeneration
and diabetes: UK nationwide study of Wolfram
(DIDMOAD) syndrome. Lancet. 1995; 346(8988):
1458-1463.
95. Khanim F, Kirk J, Latif F, Barett TG. WFS1/ wolframin
mutations, Wolfram syndrome, and associated
diseases. Hum Muat. 2001; 17(5): 357-367.
96. Marshall BA, Permutt MA, Paciorkowski AR, Paciorkowsky
AR, Hoekel J, Karzon R, et al.; Washington
University Wolfram Study Group. Phenotypic characteristics
of early Wolfram Sundrome. Orphanet J
Rare Dis. 2013; 8: 64.
97. Rigoli L, Bramanti P, Di Bella C, De Luca F. Genetic
and clinical aspects of Wolfram syndrome 1, a severe
neurodegenerative disease. Pediatr Res. 2018; 83(5):
921-929.
98. Bueno GE, Ruiz-Castañeda D, Martínez JR, Muñoz
MR, Alascio PC. Natural history and clinical characteristics
of 50 patients with Wolfram syndrome.
Endocrine. 2018; 61(3): 440-446.
99. Agakidis C, Agakidou E, Sarafidis K, Papoulidis I,
Xinias I, Farmaki E. Immune dysregulation, polyendocrinopathy,
enteropathy, X-linked syndrome associated
with a novel mutation of FOXP3 gene. Front
Pediatr. 2019; 7: 20. doi: 10.3389/fped.2019.00020.
eCollection 2019.
100. Yong PL, Russo P, Sullivan KE. Use of sirolimus in
IPEX and IPEX-like chidren. J Clin Immunol. 2008;
28(5): 581-587.
101. Alkorta-Aranburu G, Sukhanova M, Carmody D,
Hoffman T, Wysinger L, Keller-Ramey J, et al. Improved
molecular diagnosis of patients with neonatal
diabetes using a combined next-generation sequencing
and MS- approach. J Pediatr Endocrinol Metab.
2016; 29(5): 523-531.
102. Letourneau LR, Greeley SAW. Precision medicine:
Long-term treatment with sulfonylureas in patients
with neonatal diabetes due to KKCNJ11 mutations.
Curr Diab Rep. 2019; 19(8): 52.
103. Naylor R. Economics of genetic testing for diabetes.
Curr Diab Rep. 2019; 19(5): 23.
104. Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli
D. β Cell replacement after gene editing of a neonatal
diabetes causing mutation at the insulin locus. Stem
Cell Reports. 2018; 11(6): 1407-1415.
105. Yang Y, Chan L. Monogenic diabetes: What it teaches
us on the common forms of type 1 and type 2 diabetes.
Endocr Rev. 2016; 37(3): 190-222.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|