
DETERMINATION OF FETAL RHESUS D STATUS
BY MATERNAL PLASMA DNA ANALYSIS Aykut A1,*, Onay H1, Sagol S2, Gunduz C3, Ozkinay F1, Cogulu O1 *Corresponding Author: Ayça Aykut, M.D., Ph.D., Department of Medical Genetics, Ege University Faculty
of Medicine, 35100, Bornova, Izmir, Turkey; Tel.: +90-232-390-3961; Fax: +90-232-390-3971; E-mail:
aycaaykut@hotmail.com page: 33
|
INTRODUCTION
Rhesus D (RhD) alloimmunization still remains
the major cause of severe hemolytic disease
in fetuses and newborns (HDFN), which may lead to
anemia, hydrops fetalis and intrauterine fetal death.
The incidence of HDFN has been reduced by anti-
RhD prophylaxis at the 28th and 34th week of gestation.
Therefore, the demonstration of fetal D status
is very important in the management of HDFN.
Accurate prediction of the fetal RhD type provides
prenatal prophylaxis in RhD-negative women with
an RhD-positive fetus (about 40.0%) from unnecessary
administration of anti D. The most common
cause of RhD negativity is the absence of the RHD
gene [1]. Consequently, most genotyping strategies
are based on detecting the presence or absence of the
RHD gene.
An RhD status of the fetus can be detected by
invasive methods of prenatal diagnostic tests such as
amniocentesis and chorionic villus sampling (CVS)
that require fetal tissue but may result in miscarriage
or risk of increased maternal sensitization because of
complications attributed to CVS or amniocentesis.
Recent studies have focused on new non invasive
prenatal diagnostic techniques such as circulating
fetal nucleic acids in maternal plasma to develop reliable non invasive tests for clinical prenatal diagnosis
for RhD status of the fetus [2-8]. In this study,
we assessed the feasibility of fetal gender and RHD
genotyping in the plasma samples of RhD-negative
pregnant women by using primers and probes targeted
toward the SRY gene and exons 7 and 10 of the
RHD gene.
|
|
|
|



 |
Number 27 VOL. 27 (2), 2024 |
Number 27 VOL. 27 (1), 2024 |
Number 26 Number 26 VOL. 26(2), 2023 All in one |
Number 26 VOL. 26(2), 2023 |
Number 26 VOL. 26, 2023 Supplement |
Number 26 VOL. 26(1), 2023 |
Number 25 VOL. 25(2), 2022 |
Number 25 VOL. 25 (1), 2022 |
Number 24 VOL. 24(2), 2021 |
Number 24 VOL. 24(1), 2021 |
Number 23 VOL. 23(2), 2020 |
Number 22 VOL. 22(2), 2019 |
Number 22 VOL. 22(1), 2019 |
Number 22 VOL. 22, 2019 Supplement |
Number 21 VOL. 21(2), 2018 |
Number 21 VOL. 21 (1), 2018 |
Number 21 VOL. 21, 2018 Supplement |
Number 20 VOL. 20 (2), 2017 |
Number 20 VOL. 20 (1), 2017 |
Number 19 VOL. 19 (2), 2016 |
Number 19 VOL. 19 (1), 2016 |
Number 18 VOL. 18 (2), 2015 |
Number 18 VOL. 18 (1), 2015 |
Number 17 VOL. 17 (2), 2014 |
Number 17 VOL. 17 (1), 2014 |
Number 16 VOL. 16 (2), 2013 |
Number 16 VOL. 16 (1), 2013 |
Number 15 VOL. 15 (2), 2012 |
Number 15 VOL. 15, 2012 Supplement |
Number 15 Vol. 15 (1), 2012 |
Number 14 14 - Vol. 14 (2), 2011 |
Number 14 The 9th Balkan Congress of Medical Genetics |
Number 14 14 - Vol. 14 (1), 2011 |
Number 13 Vol. 13 (2), 2010 |
Number 13 Vol.13 (1), 2010 |
Number 12 Vol.12 (2), 2009 |
Number 12 Vol.12 (1), 2009 |
Number 11 Vol.11 (2),2008 |
Number 11 Vol.11 (1),2008 |
Number 10 Vol.10 (2), 2007 |
Number 10 10 (1),2007 |
Number 9 1&2, 2006 |
Number 9 3&4, 2006 |
Number 8 1&2, 2005 |
Number 8 3&4, 2004 |
Number 7 1&2, 2004 |
Number 6 3&4, 2003 |
Number 6 1&2, 2003 |
Number 5 3&4, 2002 |
Number 5 1&2, 2002 |
Number 4 Vol.3 (4), 2000 |
Number 4 Vol.2 (4), 1999 |
Number 4 Vol.1 (4), 1998 |
Number 4 3&4, 2001 |
Number 4 1&2, 2001 |
Number 3 Vol.3 (3), 2000 |
Number 3 Vol.2 (3), 1999 |
Number 3 Vol.1 (3), 1998 |
Number 2 Vol.3(2), 2000 |
Number 2 Vol.1 (2), 1998 |
Number 2 Vol.2 (2), 1999 |
Number 1 Vol.3 (1), 2000 |
Number 1 Vol.2 (1), 1999 |
Number 1 Vol.1 (1), 1998 |
|
|