MOLECULAR DIAGNOSTICS OF DUCHENNE/BECKER MUSCULAR DYSTROPHY PATIENTS BY MULTIPLEX LIGATION-DEPENDENT PROBE AMPLIFICATION ANALYSIS AND DIRECT SEQUENCING
Todorova A1,*, Guergueltcheva V2, Genova J3, Mihaylova V2, Todorov T1, Tchamova T2, Georgieva B1, Kremensky I4, Tournev I,2,5 Mitev V1
*Corresponding Author: Albena Todorova, Department of Chemistry and Biochemistry, Medical University Sofia, 2 “Zdrave” str., Sofia 1431, Bulgaria; Tel./Fax: +359-2-9530715; E-mail: todorova_albena@abv.bg
page: 3

MATERIALS AND METHODS

Patients. Fifty-one patients and four families with no living index patient available were analyzed by MLPA/ direct sequencing. All patients were diagnosed clinically only on the basis of clinical symptoms, family history, electromyography (EMG) data and creatine kinase levels. In some, the result of muscular biopsy was also available. Thirty-six patients were severely affected, diagnosed as DMD, 14 had BMD and one patient was considered to represent an intermediate form (IMD). The affected members of the four families with no living index patient were suspected to be severely affected (there was one affected patient in each family).

Method. DNA samples were obtained from peripheral blood, using a DNA extraction kit (QIAamp DNA Mini Kit, QIAGEN, Hilden, Germany). Multiplex PCR of 18 exons for deletions detection along the deletion hot-spot was performed by the classical protocols of Chamberlain et al. [2] and Beggs et al. [3].

The SALSA MLPA P034/P035 (MRC-Holland, Amsterdam, The Netherlands) kit was used in accordance with the manufacturer’s instructions [6]. Fifty to 200 ng of DNA were diluted with TE (Tris/EDTA) (1 M Tris, 0.5M EDTA, pH 8.0) buffer to a volume of 5 mL. The diluted samples were subjected to hybridization with the DMD gene-specific probes for all 79 exons and to 13 control probes (along Y, Xq and Xp chromosome regions) situated in both sets P034 and P035 [6], at 60°C overnight. The hybridized probes were ligated with a specific ligase mix, provided by the manufacturer. The final step represents PCR amplification of the ligated fragment products. The PCR buffer, PCR primers 6-FAM (6-carboxyfluorescein) labeled, the enzyme dilution buffer and the polymerase were provided in the kit.

The PCR products obtained were analyzed on an ABI PRISM™ 310 genetic analyzer (Applied Biosystems, Foster City, CA, USA) in the presence of ROX500 size standard (Applied Biosystems). Each patient sample was analyzed simultaneously with at least two normal male samples. In order to assess copy number changes (duplications) in comparison to the normal controls, MLPA data interpretation was performed by MLPA software - Coffalyser [6].

Sequencing. The DNA from patients who tested negative by MLPA were sequenced for the entire coding sequence of the DMD gene, including exon/intron borders. Each exon was amplified by primers, designed for sequencing in our laboratory (the primer sequence is available upon request). The PCR product was purified by PCR Product Pre-Sequencing Kit [United States Biochemicals (USB); Affymetryx Inc., Santa Clara, CA, USA] and sequenced by the BigDye Terminator Cycle Sequencing Kit v.3.1 (Applied Biosystems). The sequenced sample were subjected to a standard ethanol precipitation. The pellet was air-dried and kept at room temperature in the dark. Before run, the pellet was resuspended in 13 mL Hi-Di Formamide (Applied Biosystems) and loaded into the ABI PRISM™ 310 genetic analyzer (Applied Biosystems). Sequencing results were interpreted by Sequence Scanner v.1 (Applied Biosystems).




Number 27
VOL. 27 (2), 2024
Number 27
VOL. 27 (1), 2024
Number 26
Number 26 VOL. 26(2), 2023 All in one
Number 26
VOL. 26(2), 2023
Number 26
VOL. 26, 2023 Supplement
Number 26
VOL. 26(1), 2023
Number 25
VOL. 25(2), 2022
Number 25
VOL. 25 (1), 2022
Number 24
VOL. 24(2), 2021
Number 24
VOL. 24(1), 2021
Number 23
VOL. 23(2), 2020
Number 22
VOL. 22(2), 2019
Number 22
VOL. 22(1), 2019
Number 22
VOL. 22, 2019 Supplement
Number 21
VOL. 21(2), 2018
Number 21
VOL. 21 (1), 2018
Number 21
VOL. 21, 2018 Supplement
Number 20
VOL. 20 (2), 2017
Number 20
VOL. 20 (1), 2017
Number 19
VOL. 19 (2), 2016
Number 19
VOL. 19 (1), 2016
Number 18
VOL. 18 (2), 2015
Number 18
VOL. 18 (1), 2015
Number 17
VOL. 17 (2), 2014
Number 17
VOL. 17 (1), 2014
Number 16
VOL. 16 (2), 2013
Number 16
VOL. 16 (1), 2013
Number 15
VOL. 15 (2), 2012
Number 15
VOL. 15, 2012 Supplement
Number 15
Vol. 15 (1), 2012
Number 14
14 - Vol. 14 (2), 2011
Number 14
The 9th Balkan Congress of Medical Genetics
Number 14
14 - Vol. 14 (1), 2011
Number 13
Vol. 13 (2), 2010
Number 13
Vol.13 (1), 2010
Number 12
Vol.12 (2), 2009
Number 12
Vol.12 (1), 2009
Number 11
Vol.11 (2),2008
Number 11
Vol.11 (1),2008
Number 10
Vol.10 (2), 2007
Number 10
10 (1),2007
Number 9
1&2, 2006
Number 9
3&4, 2006
Number 8
1&2, 2005
Number 8
3&4, 2004
Number 7
1&2, 2004
Number 6
3&4, 2003
Number 6
1&2, 2003
Number 5
3&4, 2002
Number 5
1&2, 2002
Number 4
Vol.3 (4), 2000
Number 4
Vol.2 (4), 1999
Number 4
Vol.1 (4), 1998
Number 4
3&4, 2001
Number 4
1&2, 2001
Number 3
Vol.3 (3), 2000
Number 3
Vol.2 (3), 1999
Number 3
Vol.1 (3), 1998
Number 2
Vol.3(2), 2000
Number 2
Vol.1 (2), 1998
Number 2
Vol.2 (2), 1999
Number 1
Vol.3 (1), 2000
Number 1
Vol.2 (1), 1999
Number 1
Vol.1 (1), 1998

 

 


 About the journal ::: Editorial ::: Subscription ::: Information for authors ::: Contact
 Copyright © Balkan Journal of Medical Genetics 2006