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ABSTRACT

Purpose: Recent studies have addressed the associa-
tion between lung development and long-noncoding RNAs
(IncRNAs). But few studies have investigated the role of
IncRNAs in neonatal respiratory distress syndrome (RDS).
Thus, this study aimed to compare the expression profile
of circulating IncRNAs between RDS infants and controls.

Methods: 10 RDS infants and 5 controls were en-
rolled. RDS patients were further divided into mild and
severe RDS subgroups. Blood samples were collected for
the IncRNA expression profile. Subsequently, differentially
expressed IncRNAs were screened out. Bioinformatics
analysis was applied to establish a co-expression network
of differential IncRNAs and mRNAs, and predict the un-
derlying biological functions.

Results: A total of 135 differentially expressed In-
cRNAs were identified, including 108 upregulated and
27 downregulated IncRNAs (fold-change>2 and P<0.05)
among the three groups (non-RDS, mild RDS and se-
vere RDS groups). Of these IncRNAs, four were se-
lected as showing higher fold changes and validated by
qRT-PCR. ENST00000470527.1, ENST00000504497.1,
ENST00000417781.5, and ENST00000440408.5 were
increased not only in the plasma of total RDS patients but
also in the severe RDS subgroup. Gene Ontology (GO)
and Kyoto encyclopedia of genes and genomes (KEGQ)
analyses showed that differentially expressed IncRNAs
may play important roles in RDS through regulating PI3K-
Akt, RAS, MAPK, and TGF-p signaling pathways.

! Department of Neonatology, Children’s Hospital of Nanjing Medical
University, Nanjing, Jiangsu 210008, P.R. China;

? Department of Neonatology, Jiangyin People’s Hospital of Nantong
University, Jiangyin, Jiangsu 214400, P.R. China

Y Zhi-dan Bao contributed equally with Jun Wan.

Conclusion: The present results found that
ENST00000470527.1, ENST00000504497.1, ENST-
00000417781.5, and ENST00000440408.5 may be involved
in RDS. This could provide new insight into research of the
potential pathophysiological mechanisms of preterm RDS.
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INTRODUCTION

Preterm respiratory distress syndrome (RDS), char-
acterized by immature lung development, has been a
severe problem for preterm infants [1]. Effective treat-
ments include pulmonary surfactant (PS) replacement and
lung-protective ventilatory strategies that could improve
oxygenation and minimize ventilator-induced lung injury
[2]. Recent studies have shown that normal or abnormal
lung development is highly regulated by various signal
molecules, including fibroblast growth factor (FGF),
bone morphogenetic protein-4 (BMP-4), transform-
ing growth factor-beta (TGF-), etc. [2-3].

Long non-coding RNAs (IncRNAs) could modulate
gene expression at the post-transcription level by depre-
dating or translating target mRNAs [4]. So far, IncRNAs,
characterized by a length longer than 200 nucleotides,
have been demonstrated to participate in lung develop-
ment and related diseases [5]. The specific expression
patterns of IncRNAs have been explored in fetal lung
development. Among distinct embryonic periods of lung
development, a total of 687 differentially expressed In-
cRNAs were identified in our previous study [6]. In ad-
dition, Herriges et al. further reported that LL18/NANCI
(Nkx2.1-associated noncoding intergenic RNA) and LL34
play important roles in lung development by controlling
the expression of developmental transcription factors and
pathways [7].
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Previous studies have indicated that the components
of peripheral cord blood are important clues for the identi-
fication of neonatal diseases [8]. For example, in our previ-
ous study [5 cases in neonatal acute respiratory distress
syndrome (NARDS) group and 5 cases in non-NARDS
group], circRNA expression profiles, in which 741 cir-
cRNAs were downregulated and 588 were upregulated,
were screened with circRNA high-throughput sequencing
[9]. However, the detailed molecular regulatory mecha-
nism still remains unclear. Further exploring the role of
RNAs is still important to the field of medical research. To
date, few studies have investigated the role of circulating
IncRNAs in RDS infants. Therefore, we planned to analyze
the expression of plasma IncRNAs by RNA-sequencing
and real-time quantitative PCR, then explored the potential
function of differentially expressed IncRNAs by Gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) in RDS infants. This research could
add more useful evidence to the further study of RDS.

PATIENTS AND METHODS

Patients

This prospective study enrolled 15 premature infants
who were admitted to Jiangyin People’s Hospital of Nan-
tong University between April 2019 and October 2019.

Inclusion and Exclusion Criteria: Infants were eli-
gible for enrollment in the study if they were (1) with a
gestational age less than 36 weeks; (2) admitted within 4
hours after birth; (3) appropriate for gestational age. Pa-
tients were excluded for any of the following reasons: (1)
severe cyanotic congenital heart diseases; (2) congenital
chromosomal diseases or severe congenital malformations;
(3) severe asphyxia at delivery (5 min Apgar score <5);
(4) early symptoms of sepsis [10].

Severity grading: In the present study, the severity of
RDS was determined clinically using a combination of PS
treatment coupled with a degree of aeration of the lungs
on chest X-ray [11]. The degree of aeration of the lungs
on chest X-ray was graded as follows: (1) slightly reduced
radiolucency with still sharp cardiac and diaphragmatic
margins; (2) markedly reduced radiolucency with retained
cardiac and diaphragmatic margins; (3) severely reduced
radiolucency with air bronchogram and blurred cardiac and
diaphragmatic margins; and (4) almost completely white
lung fields with or without air bronchogram and barely
visible cardiac and diaphragmatic margin [12].

Grouping: Of the 15 included infants, 5 were neo-
nates without RDS and 10 were newborns diagnosed with
RDS (presenting as cyanosis, groan, intercostal retractions,
polypnea, and nasal flaring combined with changed aera-
tion of the lungs on chest X-ray [11]). Babies who were
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worsening when FiO, >0.30 or positive end-expiratory
pressure (PEEP) > 6 cm H,O were given PS replacement
[11]. Infants were given PS only once with lung X-ray
grade lor 2 were further defined as mild RDS, while in-
fants who needed PS re-dosing with X-ray grade 3 or 4
were defined as severe RDS. Accordingly, based on the
patients’ clinical features and chest X-ray results, 10 RDS
infants were further divided into mild RDS group (n=5)
and severe RDS group (n=5).

Data collecting: Data provided by all patients were
collected in detail using a standard data collection form,
including age, gender, gestational age, weight, 5 min Apgar
score, maternal gestational diabetes mellitus, antenatal
glucocorticoid use, etc. The collection was completed by
two individuals independently and verified by a third per-
son. Patient information has been processed anonymously
before statistical analysis.

Sample preparation and RNA-sequencing

Peripheral blood samples (2ml for each person) were
collected from all infants between 1 and 6 hours after birth.
Among them, it should be noted that, for RDS patients,
samples were drawn before PS replacement. All blood
samples were frozen in the —80°C refrigerator following
a specific process which includes centrifugation at 3,000
x g for 10 min at 4°C and then separation of clear upper
liquid into an RNase-free tube. Total RNA was then ex-
tracted from the blood samples using the TRIzol reagent
according to the manufacturer’s instructions and a previous
study [13]. After quality control of RNA, the RNA library
of each sample was prepared using NEB Next Ultra RNA
Library Prep Kit for the Illumina platform (BioLabs Inc.,
USA). The RNA sequencing analysis was performed by
Genminix Informatics Co., Ltd (Shanghai, China) with the
GeneChip® Human Transcriptome Array 2.0 (Affymetrix
Inc., US) served as a gene expression profiling tool.

Identification of differentially expressed genes

The expression profile of the IncRNAs were analyzed
by Deseq package (Affymetrix Inc., US). Samples were
hybridized on the Human Clariom D (Thermo Fisher Sci-
entific) gene chip. Background-adjustment, normalization,
and log-transformation of signals intensity were performed
with the Signal Space Transformation-Robust Multi-Array
Average algorithm (RMA). Raw data were analyzed by the
transcriptome analysis console (TAC) 4.0 software (Ap-
plied Biosystems, Foster City, CA, USA) awaiting further
analysis [14]. The differentially expressed IncRNAs and
mRNAs were screened according to the criteria of gene
differential expression with |log2-fold change| (FC) more
than 2 times and adjusted P<0.05. The differentially ex-
pressed IncRNAs were afterward clustered by a heatmap
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package while the hierarchical clustering diagram was
drawn to show the results.

Real-time quantitative PCR validation

For IncRNA expression analysis, total RNA was
transcripted to cDNA using a Reverse Transcription Kit
(PrimeScript RT Master Mix, Takara Bio Inc., Otsu, Japan),
then real-time quantitative PCR (qRT-PCR) validation was
performed using the SYBR method (SYBR® Premix Ex
Taq™, Takara Bio Inc., Otsu, Japan) according to the prod-
uct instructions. An aliquot of 1 pg total RNA was added to
each reaction mixture. qRT-PCR was performed on an ABI
7500 thermal cycler (Applied Biosystems; Thermo Fisher
Scientific, Inc. US) with SYBR Green (Roche Diagnostics
Co., Ltd. GER). The thermocycling conditions were as
follows: 95°C for 5 min, followed by 40 cycles of 95°C
for 20 sec and 55°C for 20 sec. At the end of each run, a
melting curve analysis was performed at 72°C to monitor
primer dimers and formation of non-specific products. For
data analysis, the comparative Ct method (2*4Ct) was used.
Results were expressed as fold changes of gene expression
adjusted to housekeeping gene GAPDH [15]. All primers
used in the present study were shown in table 1.

LncRNA-mRNA co-expression network

Multivariate statistical analysis was used to calculate
the Pearson correlation coefficient between differentially
expressed IncRNAs and mRNAs. The greater the cor-

Table 1. The primers sequence for PCR

Gene name Primer (5'-3')

Forward | TGGAATTCGATGGGAACTTT
Reverse | GTCTCGTCCTGGATTGAAGG
Forward | TCGATTCTCCTGTCAGTGAAC
Reverse | AATGTTTCCAGAGCACCACT
Forward | GTTGATCGATCCAAGGTCGT
Reverse | GCCTGGAATCCCAGCATTT
Forward| TGCTTGGACAACAGACATGA
Reverse | GAAGCAATGTAATCCCAGCA

ENST00000470527.1

ENST00000504497.1

ENST00000417781.5

ENST00000440408.5
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gene and gene product attributes in any organism (geneon-
tology.org). GO results were mainly classified into three
subgroups namely biological process, cellular component,
and molecular function. GO analysis provides an interpre-
tation of the relevance of genes differentially expressed
between the groups. Fisher’s exact test and the y2 test
were performed to calculate the P-value and false discov-
ery rate of each GO term function. KEGG (kegg.jp/kegg/
pathway.html) pathway analysis is a functional analysis
tool, mapping a set of genes that may be associated with
a certain IncRNA to potential pathways. The enrichment
probability of a differentially expressed gene set in a term
entry was represented by an enrichment score (EC), with
a higher EC indicating a higher significance of the entry.
The EC was calculated as the negative base 10 log of the
Pvalue. The input used in the bioinformatics analysis was
the differential mRNA genes co-expressed with IncRNA
that were screened in the IncRNA expression profile.

Statistical analysis

For clinical results (clinical characteristics), data were
analyzed using SPSS 17.0 software. Quantitative data are
expressed as mean + standard deviation (SD). One-way
variance analysis was applied to detect differences among
the three groups. In terms of qualitative data, the Pearson
Chi-square test was performed. Significant differences
were considered as P < 0.05.

RESULTS

Clinical characteristics of the premature infants

(G1, G2 and G3)

This present study was comprised of 15 premature
infants in total, 5 cases without RDS for control (named as
Group 1, G1), 5 cases with mild RDS (named as Group 2,
G2) and 5 with severe RDS (named as Group 3, G3). The
recruitment procedures are shown in Figure 1, and clinical

Forward| AACTTTGGCATTGTGGAAGG
Reverse | GGATGCAGGGATGATGTTCT

GAPDH

relation coefficient, the greater possibility that there was
a regulatory relationship between certain IncRNAs and
mRNAs. The co-expression network was constructed with
the Pearson correlation coefficient 7> 0.99 and P< 0.05 as
the filtering standard in this study.

GO and KEGG pathway analysis

GO and KEGG pathway analysis were applied to
predict functions of the differentially expressed genes.
The GO project offers a controlled vocabulary to label

Premature infants
n=56

Exclusion criterias:

severe asphyxia;

treated with PS before blood collection;
complex congenital malformations;
severe cyanotic congenital heart diseases.

n=22
Yes Diagnosed as  RDS No
Without RDS
n=6

1 infant excluded for sepsis

6 infants excluded for sepsis

Mild RDS Severe RDS Control
n=>5 n=5 n=5

Figure 1. The recruitment procedures of the patients.
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characteristics of the infants are summarized in table 2.
There were no significant differences in gestational age,
birth weight, 5 min Apgar score, gender, mode of deliv-
ery, twin pregnancy, mother of gestational diabetes, and
prenatal glucocorticoid (P>0.05).

Expression profile of IncRNAs and mRNAs

in three groups (G1, G2, and G3)

Affymetrix Human GeneChip was utilized to deter-
mine the expression spectrum of IncRNAs. As a result, the
G1 vs. G2 comparison showed a total of 10112 differen-
tially expressed IncRNAs, while the G2 vs. G3 comparison
showed a total of 4663 differentially expressed IncRNAs.
Of them, 135 IncRNAs were indicated to be differentially
expressed among all three groups (G1, G2, and G3) after
fold-change filtering (adjusted P value<0.05 and |log2-fold

Table 2. Clinical characteristics of the three groups

change|>2). The information of the top 10 upregulated and
downregulated IncRNAs are listed in table 3. A hierarchi-
cal clustering map is presented to distinguish IncRNA
expression profiles among the three groups. (Figure 2)

Construction of the IncRNA-mRNA co-expression

network (G1, G2, and G3)

Furthermore, differentially expressed mRNAs were com-
pared for target prediction. Of them, the comparison between
G1 and G2 showed a total of 2520 differentially expressed
mRNAs, while the comparison between G2 and G3 showed
a total of 530 mRNAs. The comparison of the three groups
showed a total of 616 differentially expressed mRNAs. The
IncRNA-mRNA co-expression network was constructed and
showed a complex interaction between IncRNAs and mRNAs.
Our analysis finally identified a total of 278 mRNAs closely

Group G1 (N=5) G2 (N=5) G3 (N=5) Pvalve
Gestational age (week) 32.54+2.35 32.14+3.47 31.11£1.15 0.66
Birth weight (g) 1654.00+540.81 1622.00+503.16 1473.00+274.94 0.81
Apgar score at 5 min 9.20+0.84 8.40+1.14 8.40+1.14 0.41
Male (%) 40.00 40.00 20.00 0.78
Cesarean section (%) 40.00 40.00 60.00 0.80
Twins (%) 20.00 0 20.00 0.62
Gestational diabetes (%) 60.00 40.00 40.00 0.80
Without glucocorticoid
usage betgore delivery (%) 40.00 20.00 40.00 0.78

Quantitative data are represented as mean = SEM. G1 was infants without RDS, G2 was infants with mild RDS and G3

was infants with severe RDS.

Table 3. The differentially expressed IncRNAs (Fold change> 2)

LncRNA Gene Trend CHR Strand
ENST00000417781.5 CSE1L-AS1 Up chr20 -
ENST00000418924.6 RIN3 Up chrl4 +
ENST00000440408.5 TTTY15 Up chrY +
ENST00000467315.5 PFKL Up chr21 +
ENST00000470527.1 CACHDI1 Up chrl +
ENST00000481985.5 RPL3 Up chr22 -
ENST00000488606.5 MRPS15 Up chrl -
ENST00000497617.1 TSFM Up chri2 +
ENST00000504497.1 DMXL1 Up chr5 +
ENST00000530931.1 CD8§2 Up chrll +
ENST00000460278.5 ANKRD28 Down chr3 -
ENST00000544168.5 AKTI Down chrl4 -
ENST00000611549.4 RAP1GAP Down chrl -
ENST00000491117.5 GNA12 Down chr7 -
ENST00000610076.1 KCNT2 Down chrl -
ENST00000601034.2 INTS6-AS1 Down chrl3 +
ENST00000570265.5 Cl50rf41 Down chrl5 +
ENST00000592944.1 ITGA2B Down chrl7 -
ENST00000494731.5 ZDHHC20 Down chrl3 -
ENST00000628791.1 AC093495.1 Down chr3 +
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Figure 2. Hierarchical clustering of IncRNA expression among the three groups. (A) 108 upregulated IncRNAs, (B) 27 downregulated
IncRNAs. Red indicates significantly increased expression. Green indicates significantly reduced expression, and black indicates no
difference in expression levels.
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Table 4. The differentially expressed mRNAs (Fold change> 2)

mRNA IncRNA Trend CHR Strand
AC027796.3 ENSG00000262304.2 Up chrl7 -
AQP7 ENSG00000165269.12 Up chr9 -
ARNT2 ENSG00000172379.20 Up chrl5 +
DGCR6 ENSG00000183628.12 Up chr22 +
GRID2IP ENSG00000215045.8 Up chr7 -
MICU3 ENSG00000155970.11 Up chrg +
MROH7-TTC4 ENSG00000271723.5 Up chrl +
RHOXF1 ENSG00000101883.4 Up chrX -
ZNF683 ENSG00000176083.17 Up chrl -
AC046185.1 ENSG00000125695.12 Down chrl7 -
AC137834.1 ENSG00000258830.1 Down chrl2 -
AL136295.1 ENSG00000254692.1 Down chrl4 -
BLOCI1S5-TXNDC5 ENSG00000259040.5 Down chr6 -
CTSV ENSG00000136943.10 Down chr9
CYP3AS ENSG00000106258.13 Down chr7
GABRE ENSG00000102287.18 Down chrX
GSTMS ENSG00000134201.10 Down chrl +
KCNT2 ENSG00000162687.16 Down chrl
MRAP2 ENSG00000135324.5 Down chr6 +
MYZAP ENSG00000263155.5 Down chrl5 +
PKDCC ENSG00000162878.12 Down chr2 +
PPPIR14C ENSG00000198729.4 Down chr6 +
SH3D19 ENSG00000109686.17 Down chr4
SLC2A14 ENSG00000173262.11 Down chr12

related to 108 upregulated IncRNAs and 27 downregulated
IncRNAs. These mRNAs with FC> 2 are shown in table 4.

GO and KEGG analysis

of IncRNAs and mRNAs

GO and KEGG analysis were further performed to an-
notate the biological functions of differentially expressed
mRNAs. The GO analysis indicated that the mRNAs
co-expressed with 108 upregulated IncRNAs were asso-
ciated with 247 GO terms. The top 25 enriched terms are
shown in Figures 3A and 3B.

Additionally, a KEGG pathway analysis was per-
formed to investigate the possible roles of the IncRNA -as-
sociated mRNA genes. The most significant pathways
enriched in the set of upregulated protein-coding genes
included PI3 kinase/Akt (PI3K-Akt), RAS, and mitogen-
activated protein kinase (MAPK) signal pathways, while
the most significant KEGG pathways of the downregulated
protein-coding genes were mainly related to metabolic
pathways, etc. The bubble diagrams of the top KEGG
pathways of mRNAs co-expressed with upregulated and
downregulated IncRNAs are shown in Figure 3C and 3D.
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Differentially expressed IncRNAs

verified by qRT-PCR

Following the screening, four IncRNAs includ-
ing ENST00000470527.1, ENST00000504497.1,
ENST00000417781.5, and ENST00000440408.5 were
further confirmed by qRT-PCR. Compared with G2 and
G1, the expression levels of these four IncRNAs were
increased in G3, which is consistent with the results of
RNA sequencing. The relative expression levels are shown
in Figure 4.

In-depth bioinformatics analysis of IncRNAs
showed all the four IncRNAs were involved in the
MAPK signaling pathway by down-regulating gene
GRB2 and MECOM. Moreover, ENST00000417781.5
and ENST00000440408.5 may regulate the MAPK sig-
naling pathway by down-regulating gene /GF2, while
ENST00000440408.5 and ENST00000504497.1 may
target the MAPK signaling pathway by up-regulating
gene EFNAI and PLA2G4F, respectively. This study also
showed that the above four IncRNAs participate in PI3K-
Aktand RAS signaling pathway by down-regulating GRB2,
while ENST00000417781.5 and ENST00000440408.5
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Figure 3. GO and KEGG analysis of IncRNA function-related mRNAs. (A) GO terms associated with mRNAs related to upregulated
IncRNAs on biological process. (B) GO terms associated with mRNAs related to downregulated IncRNAs on biological process. (C)
Bubble Diagram of the KEGG pathways of mRNAs associated with upregulated IncRNAs. (D) Bubble Diagram of the KEGG pathways
of mRNAs associated with downregulated IncRNAs.
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Figure 4. qRT-PCR of the differentially expressed IncRNAs. The expression level of differentially expressed four IncRNAs were
further determined using qRT-PCR. Group! was infants without RDS, Group2 was infants with mild RDS, and Group3 was infants with
severe RDS. (A) relative expression of ENST00000417781.5, (B) relative expression of ENST00000440408.5, (C) relative expression of
ENST00000504497.1, (D) relative expression of ENST00000470527.1

could regulate PI3K-Akt pathway by down-regulating
IGF?2 and up-regulating /TGBS and TCL1B.

In addition, three of IncRNAs including ENST-
00000417781.5, ENST00000470527.1, and ENST-
00000504497.1 could target the RAS signaling pathway
by up-regulating RASALI, while ENST000004177, as

well as ENST00000440408.5 could regulate RAS path-
way by down-regulating /GF2. ENST00000440408.5 and
ENST00000504497.1 may be involved in the RAS sig-
naling pathway by up-regulating EFNAI and PLA2G4F,
respectively. LncRNAs including ENST00000417781.5,
ENST00000470527.1, and ENST00000504497.1 could

17



BJMG

DIFFERENTIALLY EXPRESSED LNC RNAS IN RDS INFANTS

participate in the TGF- signaling pathway by promoting
gene expression of AMH and inhibiting 7G/F2. In addition,
ENST00000470527.1 and ENST00000504497.1 could be
involved in the TGF-f pathway by up-regulating GDF'7
and down-regulating GDF'6, while ENST00000440408.5
may down-regulate FST to be involved in TGF-B path-
way. The pathway regulatory network of four validated
IncRNAs are shown in Figure 5.
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Figure 5. Pathway regulatory network of four validated
IncRNAs. Red triangles indicate the four selected IncRNAs. Blue
circles indicate mRNAs down-regulated by IncRNAs, while red
circles indicate mRNAs up-regulated by IncRNAs, respectively.
Arrows indicatle signaling pathways associated with protein-
coding genes co-expressed with the four selected IncRNAs.

DISCUSSION

RDS is one of the most common respiratory disorders
in preterm infants, which can induce acute respiratory
failure [16]. Currently, it has been proven that RDS is a
complex disease characterized by immature lung devel-
opment. The embryonic phase of human lung develop-
ment begins approximately at the gestational age of 3-4
weeks and originates from the endoderm. Immature fetal
embryonic lung development has been recognized in the
pseudo-glandular period (7-16 weeks of gestation), cana-
licular period (16-25 weeks of gestation), and terminal
saccular period (25 weeks of gestation to full term) [17].
Yet the specific molecular regulatory mechanism of RDS
has not yet been fully understood.

LncRNAs are related to many biologic processes,
such as cell differentiation and proliferation [18]. Previ-
ous studies have indicated that IncRNAs are involved in
lung development by regulating tracheal branches and
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differentiation of lung epithelial progenitor cells [19-20].
Few studies, however, have investigated the role of In-
cRNAs in RDS patients. Our study found that IncRNA
and mRNA profiles exhibited differential expressions in
the plasma of RDS patients. Our results further showed
that the expression patterns of mRNAs and IncRNAs were
consistent (Figures 2 and 4). Further function analysis of
target IncRNAs and mRNAs described that PI3K-Akt,
RAS, MAPK, and metabolic pathways might be down-
stream of the significant IncRNAs, and were potentially
involved in the development of RDS.

Interestingly, we found that the expression level of
IncRNA ENST00000470527.1, ENST00000504497.1,
ENST00000417781.5, and ENST00000440408.5 was
increased in the plasma of RDS patients, compared with
non-RDS controls. Additionally, the level of those four
IncRNAs was significantly higher in the severe patients,
compared with the mild RDS group. The above results
suggest that these four IncRNAs were possibly related to
the severity of RDS.

A few studies have investigated IncRNA
ENST00000440408.5, also known as Testis-specific tran-
script Y-linked 15 (TTTY15). A study reported by Zhang et
al. demonstrated that TTTY 15 knockdown can protect car-
diomyocytes against hypoxia-induced apoptosis and mito-
chondrial energy metabolism dysfunction in vitro through
the let-7i-5p/TLR3/NF-kB pathway [21]. The let-7 family
has been demonstrated to be important in lung develop-
ment and regulate RAS gene expression [22]. Fabro et al.
further reported that circulating miRNA-let-7i-5p signifi-
cantly changed in patients with acute pulmonary embolism
and idiopathic pulmonary arterial hypertension compared
with healthy controls [23]. Let-7i-5p were just regulators
of pulmonary arterial adventitial fibroblasts, pulmonary ar-
tery endothelial cells, and pulmonary artery smooth muscle
cells. Thus, we thought that IncRNA ENST00000440408.5
may be involved in lung development by interacting with
miRNA let-7 directly or indirectly.

To our knowledge, the other three IncRNAs
(ENST00000470527.1, ENST00000504497.1, and
ENST00000417781.5) were reported for the first time.
Bioinformatics analysis showed that they may be associated
with PI3K-Akt, RAS, MAPK, and TGF- signaling path-
ways, which could regulate lung development and PS secre-
tion. Furthermore, the process of transdifferentiation from
alveolar epithelial type II to type I cells is also controlled
by TGF-B and BMP signaling pathways [24]. In our pre-
vious study, the results indicated that SMAD4 negatively
regulates the expression of surfactant proteins (SPs), and
that miR-431 negatively regulates the expression of SPs by
inhibiting the BMP4/activin/ TGF-f signaling pathway by
targeting SMAD4 [25]. In addition, the PI3K-Akt signaling
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pathway synergistically regulates epithelial-mesenchymal
transition [26], which is also essential for lung development
[27]. Zhao M et al. reported that naringenin pre-treatment
ameliorated LPS-induced acute lung injury through its anti-
oxidative and anti-inflammatory activity and by inhibition
of the PI3K/AKT pathway in mice [28]. As far as Ras/
MAPK signaling pathway is concerned, it affects the FGF
signaling cascade, while the FGF signaling pathway is cru-
cial for the dynamic and reciprocal communication between
epithelium and mesenchyme during lung development [29].

There were several limitations in our study. Firstly, the
sample size is relatively small, a larger sample study could
validate the results further. Secondly, the specific functions
of four differentially expressed IncRNAs should be deeply
explored in future studies to clarify the pathogenesis of RDS.

CONCLUSION

135 IncRNAs were differentially expressed among
non-RDS group, mild RDS group and severe RDS group.
LncRNA-mRNA co-expression networks further iden-
tified a total of 278 mRNAs that were closely related
to the above differentially expressed IncRNAs. Among
them, the differential expression of ENST00000470527.1,
ENST00000504497.1, ENST00000417781.5, and
ENST00000440408.5 were confirmed by qRT-PCR. The
above results could provide a new sight for researching the
potential pathophysiological mechanisms of RDS.
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ABBREVIATIONS

Respiratory distress syndrome (RDS)

Pulmonary surfactant (PS)

Fibroblast growth factor (FGF)

Bone morphogenetic protein-4 (BMP-4)
Transforming growth factor-beta (TGF-f3)

Long non-coding RNAs (IncRNAs)
Nkx2.1-associated noncoding intergenic RNA (NANCI)
Gene ontology (GO)

Kyoto Encyclopedia of Genes and Genomes (KEGG)
Positive end-expiratory pressure (PEEP)

Fold change (FC)

Real-time quantitative PCR (qRT-PCR)
Enrichment score (EC)

Standard deviation (SD)

PI3 kinase/Akt (PI3K-Akt)

Mitogen-activated protein kinase (MAPK)
Testis-specific transcript Y-linked 15 (TTTY15)
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