A PARTIAL TRISOMY 2p(p21→pter) DERIVED FROM A PATERNAL t(2;4)(p21;q33) KARYOTYPE

Mahjoubi F1*, Zolfagary N2

*Corresponding Author: Frouzandeh Mahjoubi, Clinical Genetic Department, National Research Institute of Genetic Engineering and Biotechnology, Pajoohesh Blvd., Karaj High Way, P.O. Box 14155-6343, Tehran, Iran; Tel.: +9821-4580389; Fax: +9821-4580399; E-mail: Frouz@nigeb.ac.ir

ABSTRACT

We describe a 7-year-old boy with additional material on 4q whose karyotype was 46,XY,der(4)t(2;4)(p21;q33). The father’s karyotype was 46,XY,t(2;4)(p21;q33) and the mother’s was normal. These results indicate that the extra material on 4q in the patient originated from the father’s chromosome 2p. The patient had dysmorphic facial features, prominent ears, long fingers, developmental delay, speech delay and suffered from seizures.

Key words: Trisomy 2p, Dysmorphic facial features

INTRODUCTION

Trisomy duplication of 2p is associated with a characteristic syndrome as described in (1-8). Signs and symptoms mentioned in these sources for the chromosome 2p duplication syndrome include: small head; prominent high forehead; dysmorphic ears; low-set ears; widely spaced eyes; strabismus; short nose, broad nasal bridge; anencephaly, long, tapering, hyperflexible fingers; limited hip movement; scoliosis; reduced muscle tone; congenital heart defect; bronchial aplasia; pulmonary aplasia; undescended testes and small penis in males, mental and growth retardation, and neuroblastoma (1-8). We present here a patient with distal partial trisomy 2p that resulted from a familial balanced reciprocal translocation.

CASE REPORT

A 7-year-old male was referred to our clinic for developmental and psychomotor delay. He was born after a normal gestation to a normal and healthy couple who were not consanguineous. He was born at term by natural delivery.

At the time of diagnosis his weight was 14.5 kg, his height was 100 cm, and his head circumstance was 49.5 cm. He had a prominent high forehead, maxillary hypoplasia, small mandible, widely spaced eyes, pectus excavatum, long fingers, undescended testes, small penis, reduced muscle tone, slender body, and was mentally and developmentally retarded (Figure 1). Both mother and father had an apparently normal phenotype with no history of major clinical abnormalities in their families.

Cytogenetic Study. Chromosome study was
performed on a peripheral blood leukocyte culture according to standard protocols (9). The proband’s karyotype was 46,XY,der(4),t(2;4)(p21;q33) (Figure 2). The father’s karyotype was 46,XY,t(2;4)(p21;q33) (Figure 3), while the mother’s karyotype was normal. We concluded that the extra chromosomal material in the patient was derived from the father.

DISCUSSION

Our patient had a derivative chromosome 4, that arose from a paternal balanced reciprocal translocation, \textit{i.e.}, 46,XY,t(2;4)(p21;q33). As a consequence, the clinical features associated with the presence of an extra 2p21 to 2pter region are seen in the patient.

Carriers of balanced translocations do not generally reveal any abnormal phenotype. However, they are at risk of infertility/miscarriages. Furthermore, they may have child or children who inherit either one of the aberrant chromosomes with the partial monosomy or one of the abnormal chromosomes with partial trisomy as in our case. These chromosomal segments might contain or lack a variety of important genes that are able to cause multiple congenital malformations in the outgoing generations.

A summary of all clinical findings in similar published reports is listed in Table 1.

Partial trisomy of different segments of 2p with some uncommon features has been presented. For example, trisomy 2p21→p25 is associated with broncho-pulmonary hypoplasia (17); trisomy 2p23 with flat, wide glabella and depressed nasal bridge (3); trisomy 2p24 with neural...
Figure 2. The karyotype of the proband.

Figure 3. The karyotype of the father.
Table 1. A summary of clinical findings of patients with partial duplication of 2p.

<table>
<thead>
<tr>
<th>Region</th>
<th>Sex-Age</th>
<th>Signs/Symptoms</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2p21→2pter</td>
<td>F-4</td>
<td>Mental retardation; short stature; congenital heart disease; dysmorphic facial features</td>
<td>10</td>
</tr>
<tr>
<td>2p23→2pter</td>
<td>F-7 months</td>
<td>Prominent forehead with a flat hemangioma; depressed nasal bridge; protruding tongue; posteriorly angulated ears; retinal hypopigmentation; esotropia with poor abduction of the right eye; foveal hypoplasia; striking left optic nerve hypoplasia</td>
<td>11</td>
</tr>
<tr>
<td>2p21→p24.2</td>
<td>F-18 months</td>
<td>Microcephaly; open fontanelles; prominent forehead; flat occiput; hypertelorism; sparse eyebrows; small nose with depressed nasal bridge; bulging philtrum; thin upper lip, high arched palate; low-set and posteriorly rotated ears; small mandible, short neck with a low hairline; eye malformations</td>
<td>12</td>
</tr>
<tr>
<td>2p25→p23</td>
<td>F-53 months</td>
<td>Microcephaly; dilated lateral horns of the cerebral ventricles; transient cortical blindness; myopia; muscle hypotonia; dilatation of the left renal collecting system</td>
<td>13</td>
</tr>
<tr>
<td>2p25.3→2pter</td>
<td>M-at birth</td>
<td>Mental and growth retardation; psychomotor delay; microcephaly; ptosis, micrognathia, a small palate and cryptorchidism</td>
<td>15</td>
</tr>
<tr>
<td>2p21→2pter</td>
<td>M-7</td>
<td>Mental retardation; prominent high forehead; maxillary hypoplasia; small mandible; widely spaced eyes; pectus excavatum; long fingers; undescended testes, small penis; slender body; seizures</td>
<td>Our study</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

The authors are grateful to the family of the patient.

REFERENCES

