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 ABSTRACT

 Breast cancer is the most frequent and the most 
deadly cancer in women in Western countries. 
Different classifications of disease (anatomoclini-
cal, pathological, prognostic, genetic) are used for 
guiding the management of patients. Unfortunately, 
they fail to reflect the whole clinical heterogeneity 
of the disease. Consequently, molecularly distinct 
diseases are grouped in similar clinical classes, 
likely explaining the different clinical outcome 
between patients in a given class, and the fact that 
selection of the most appropriate diagnostic or 
therapeutic strategy for each patient is not done ac-
curately. Today, treatment is efficient in only 70.0-
75.0% of cases overall. Our repertoire of efficient 
drugs is limited but is being expanded with the 
discovery of new molecular targets for new drugs, 
based on the identification of candidate oncogenes 
and tumor suppressor genes (TSG) functionally rel-
evant in disease. Development of new drugs makes 

therapeutical decisions even more demanding of 
reliable classifiers and prognostic/predictive tests. 
Breast cancer is a complex, heterogeneous disease 
at the molecular level. The combinatorial molecular 
origin and the heterogeneity of malignant cells, and 
the variability of the host background, create dis-
tinct subgroups of tumors endowed with different 
phenotypic features such as response to therapy and 
clinical outcome. Cellular and molecular analyses 
can identify new classes biologically and clinically 
relevant, as well as provide new clinically relevant 
markers and targets.
 The various stages of mammary tumorigenesis 
are not clearly defined and the genetic and epige-
netic events critical to the development and aggres-
siveness of breast cancer are not precisely known. 
Because the phenotype of tumors is dependent on 
many genes, a large-scale and integrated molecular 
characterization of the genetic and epigenetic alter-
ations and gene expression deregulation should al-
low the identification of new molecular classes clin-
ically relevant, as well as among the altered genes 
and/or pathways, the identification of more accurate 
molecular diagnostic, prognostic/predictive factors, 
and for some of them, after functional validation, 
the identification of new therapeutic targets.
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 INTRODUCTION

 High-Throughput Molecular Analyses in 
Breast Cancer and Translational Research. 
Unprecedented molecular characterization is possi-
ble using high-throughput molecular analyses, avail-
able at the DNA level with comparative genomic 
hybridization on microarrays (aCGH) [1-4], and at 
the RNA level, for expression profiling with DNA 
microarrays [5]. When these techniques emerged, 
expected applications were multiple in oncology, in 
both basic and translational research.
 A number of studies have already shown the 
promising role of DNA microarray-based expres-
sion profiling in breast cancer translational re-
search by identifying new clinically and biologi-
cally relevant intrinsic molecular subtypes (luminal 
A, luminal B, ERBB2+, basal, and normal-like) 
[6-7] and new prognostic and/or predictive gene 
signatures, whose predictive impact is superior to 
conventional histoclinical factors (for review, see 
[8]). Currently, three prognostic gene signatures 
are already commercially available: Oncotype 
DX (Genomic Health, Inc., Redwood City, CA, 
USA), MammaPrint (Agendia BV, Amsterdam, 
The Netherlands), and the HOXB13/ IL17BR (H/I) 
ratio (Theros H/ISM; bioTheranostics, San Diego, 
CA, USA). Others under development include the 
Intrinsic Gene Set, the Rotterdam Signature, the 
Wound Response Indicator, and the Invasive Gene 
Signature. Similarly, signatures predictive for re-
sponse to specific therapies have been reported 
[9-12]. These prognostic or predictive signatures, 
once prospectively validated, will provide the op-
portunity to refine our therapeutic approach by in-
dividualizing treatment to patients’individual tumor 
profiles, likely contributing to significantly improve 
the clinical outcome (for review, see [13]).
 The aCGH technology has been applied more 
recently to breast cancer. To date, some studies, in-
cluding ours, have suggested a prognostic role of 
genomic data [14-16]. The integrative analysis of 
whole-genome expression and genomic data has 
revealed promising results for identifying candidate 
genes (identified as deregulated at the DNA and RNA 
levels simultaneously) associated with breast cancer 
or with specific features of disease [14,16-24].
 For years, our laboratory has identified a large 
number of molecular alterations in recurrent breast 

cancer associated with: i) structural aberrations such 
as breakages [25-29], and ii) evaluated the clinical 
impact of the amplification [14,30,31]. We were 
among the first to demonstrate that the integrative 
analysis of whole-genome expression and genomic 
high resolution data are useful to identify new onco-
genes and TSG specific to a clinical entity or a mo-
lecular subtype. Therefore, our comparative analy-
ses of integrated profiles of breast cancers have been 
reported in basal and luminal tumors, two molecular 
subtypes of very different clinical courses [19], but 
also in particularly aggressive cancer: inflammatory 
breast cancer [32], breast cancers in young women 
(Raynaud et al., in preparation), and ERBB2 ampli-
fied breast cancers [33]. This laboratory was also 
one of the first to identify specific genomic markers 
of luminal B: L3MBTL4 (18p11) [34] and ZNF703 
(8p12) [35] as potential TSG and oncogene, respec-
tively.
 Candidate Genes May Also be Transcription-
nally Deregulated Because of Epigenetic Alterat-
ions. The widespread deregulation of basic epige-
netic profiles has emerged as a common phenotypic 
trait of cancer cells [36-38]. The epigenetic modifi-
cations include covalent tags added to nucleosome 
histone components [e.g., acetylation of histone H3 
and/or H4 (H3/4Ac) and/or various levels of meth-
ylation on lysine residues of histone H3 (H3K4/
K9me1/ 2/3), a non exhaustive list defined as the 
histone code], as well as methylation of CpG di-
nucleotides [39,40]. This applies particularly to 
CpG methylation profiles, whose modification has 
direct implication on many aspects of cell biology, 
namely cell division, survival, development and, 
consequently, oncogenesis. DNA methylation at 
regulatory regions of a gene, including promoter, 
generally leads to transcriptional silencing. CpG 
methylation-dependent silencing is now considered 
as an important mechanism of TSG inactivation in 
cancer cells, in addition to somatic genetic lesions 
[41]. DNA methylation changes in human cancers 
are complex and vary between different tumor 
types. Promoter methylation effectively represses 
transcription and occurs in many genes involved 
in human breast cancer development [42]. Among 
these, genes associated with cell cycle regulation 
(APC, RASSF1, RB, TFAP2A), or coding for ster-
oid receptors (ESR1, PGR, RARa), suppressors 
(BRCA1, CDKN2A, CST6), and genes associated 
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with metastasis (CDH1, CEACAM6, PCDHGB6) 
and other genes such as NRG1. The majority of 
these affected genes are potential or known TSG 
[43]. Interestingly, there is also increasing evi-
dence that methylation of regulatory regions of 
cancer-related genes can be one of the most preva-
lent molecular markers for human cancer diseases 
[44]. The potential clinical applications of DNA-
methylation biomarkers may include diagnosis 
of neoplasm, tumor classification, prediction of 
response to treatment, or prognosis. DNA meth-
ylation status has thus been extensively studied 
in various molecular or clinical entities in breast 
cancers in order to better characterize them or im-
prove their molecular classification [45-49].
 In the continuity of our strategy, the high res-
olution DNA promoter methylation status will 
be analyzed on human promoter array (Agilent 
Technologies, Massy, France) and integrated to the 
genomic and gene expression data previously col-
lected in the same set of 300 breast tumors. High-
throughput molecular analyses of breast cancer 
have already revealed some part of their potential. 
Such integrated approaches could contribute to bet-
ter understand the various levels of the dynamic 
molecular changes in the mammary oncogenesis 
and identify new markers.
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