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ABSTRACT

Disorders of sex development (DSD) are a group 
of rare conditions characterized by discrepancy between 
chromosomal sex, gonads and external genitalia. Congeni-
tal abnormalities of the kidney and urinary tract are often 
associated with DSD, mostly in multiple malformation 
syndromes. We describe the case of an 11-year-old Cau-
casian boy, with right kidney hypoplasia and hypospadias. 
Genome-wide copy number variation (CNV) analysis re-
vealed a unique duplication of about 550 kb on chromo-
some Xq27, and a 46,XX karyotype, consistent with a sex 
reversal phenotype. This region includes multiple genes, 
and, among these, SOX3 emerged as the main phenotypic 
driver. This is the fifth case reporting a genomic imbalance 
involving the SOX3 gene in a 46,XX SRY-negative male, 
and the first with associated renal malformations. Our data 
provide plausible links between SOX3 gene dosage and 
kidney malformations. It is noteworthy that the current and 
reported SOX3 gene duplications are below the detection 
threshold of standard karyotypes and were found only by 
analyzing CNVs using DNA microarrays. Therefore, all 
46,XX SRY-negative males should be screened for SOX3 
gene duplications with DNA microarrays.

Keywords: Congenital anomalies of kidneys and the 
urinary tract (CAKUT); Copy number variations (CNVs); 
Disorders of sex development (DSD).

INTRODUCTION

Sex in humans is genetically determined and is defined 
by the sex chromosomes (XY for males and XX for females) 
and by the development of gender specific anatomy, physiol-
ogy and behavior. A complete or partial mismatch between 
genetic sex and phenotypic sex results in disorders of sexual 
development (DSD). Disorders of sexual development in 
humans have a frequency of at least one in 100 live births 
[1], while the frequency of “corrective” genital surgery is 
estimated to be between one and two per 1000 live births. 
There is a wide spectrum of DSD ranging from hypospadias 
(incidences variable from one in 500 to six in 250 births) 
[2] to ambiguous genitalia (incidence one in 4500 births) 
[3] and complete sex reversal (46,XY females and 46,XX 
males; one in 20,000 births) [4]. Congenital malformations 
of the kidney and DSD are often described in association, 
in the broad spectrum of multiple malformation syndromes, 
as it happens in Smith-Lemli-Opitz Syndrome (OMIM: 
270400), a complex syndrome characterized by congenital 
kidney and ureteric abnormalities associated with geni-
tal anomalies and inadequate sexual hormone production 
[5,6]. Mutations of Wilms tumor 1 (WT1) gene may lead 
to Denys-Drash syndrome (OMIM: 19408), Frasier syn-
drome (OMIM: 13668) or Wilms aniridia genitourinar renal 
(WAGR) syndrome (OMIM: 194072), which are character-
ized by kidney and genitourinary diseases in association 
with internal and external genitalia defects [7-10] and mostly 
46,XY female phenotypes. The sex-determining region Y 
(SRY) is considered to be the main regulator of male sex 
determination in mammals [1,11]. The main function of SRY 
in sex determination is to upregulate its direct target gene 
SOX9, thus initiating Sertoli cell differentiation [12,13,14]. 
The SRY-related HMG box-containing gene 3 (SOX3) is a 
member of a family of 20 SOX genes, structurally similar to 
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SRY [15]. This gene is located on the X chromosome and 
it consists of a single exon [16]. The SOX3 gene encodes 
for a transcription factor expressed in the central nervous 
system (CNS) of vertebrate embryos, which is essential for 
pituitary, craniofacial and neuronal development [15-22].

Prior human genetics studies implicated SOX3 in brain 
development and gender determination. Laumonnier et al. 
[17] described a pericentric inversion of the X chromosome 
involving the IL1RAPL at Xp21.3 and the polyalanine re-
peat of SOX3 at Xq26.3, in a 10-year-old girl affected a by 
mild memory deficiency, strabism, speech impairment and 
hypotonia; because previous studies showed that female 
carriers of microdeletions involving IL1RAPL do not show 
intellectual disability [23,24], the phenotype was likely at-
tributable to another gene in the duplicated region. Analysis 
of an independent family segregating X-linked intellectual 
disability demonstrated an in-frame duplication of 33 bp 
involving a polyalanine repeat of SOX3, thus pointing to 
SOX3 mutations as the cause of neurodevelopmental delay.

A sub-microscopic duplication of 685.6 kb at Xq27.1 
involving SOX3, has been reported in two siblings affected 
by hypopituitarism and abnormalities of corpus callosum, 
while a duplication involving the SOX3 polyalanine repeat 
was identified in three male siblings from another family, 
segregating panhypopituarism and abnormalities of the pitu-
itary gland: all of these patients had absent infundibulum and 
did not present an intellectual disability [18]. A duplication 
of 3.9 Mb involving the Xq27 region containing SOX3, has 
been reported in males affected by X-linked hypopituitarism 
[25]. In a study of 16 SRY-negative 46,XX male patients, 
DNA microarray analysis showed genomic rearrangements 
of the SOX3 regulatory region in three patients, two duplica-
tions and one deletion: the CNVs involved genomic regions 
in close proximity of SOX3 in all three patients [26].

Interestingly, a recent report described a SRY-negative, 
46,XX boy affected by ovotesticular DSD, with hypo-spadi-
as and cryptorchidism with a de novo duplication of a 502 
kb fragment of the long arm of chromosome X, involving 
SOX3, as well as RPS17P17, CDR and MIR 320D2. The 
role of the RPS17P17, CDR1 and MIR320D2 genes has not 
been investigated [27]. In summary, SOX3 genetic variants 
have been associated with X-linked intellectual disability 
with isolated growth hormone deficiency as well as X-linked 
panhypopituitarism and 46,XX sex reversal in males. Until 
now, no other developmental phenotypes have been associ-
ated to SOX3 gene dosage.

CASE PRESENTATION

We were consulted on a 11-year-old white Caucasian 
male for the findings of hypoplasia of the right kidney and 
coronal moderate hypospadias, after surgical correction of 

the urethra anomaly. He was the first child of a non con-
sanguineous couple. His parents and younger sister were 
healthy. His intelligence was normal (IQ 92) and he had 
no other anomalies. The behavior, growth and develop-
ment were all normal. His testes volume was >4 mL and 
the penis length was 5 cm. Abdominal ultrasound and 
magnetic resonance imaging (MRI) did not show internal 
female genitalia, and confirmed right kidney hypoplasia 
(Figure 1, Table 1). The left kidney size was 80 × 32 mm, 
while the right kidney size was 57 × 23 mm.

The patient was investigated as part of a study ap-
proved by the institutional review board at our International 
Centre for genetic Engineering and Biotechnology in Skopje 
(Republic of Macedonia) and at the Department of Nephrol-
ogy, Columbia University, New York, NY, USA. This patient 
was already reported as part of our prior study on copy 
number variations (CNVs) in kidney malformations [28].

An additional 23 patients were selected to perform tar-
geted Sanger resequencing of SOX3. We selected 23 males 
affected by urinary tract developmental defects (10 renal 
hypodysplasia; three vescicoureteral reflux; two posterior 
urethral valve; four obstructive uropathy; one bladder anom-
aly, one ectopic, one accessory kidney and one horseshoe 
kidney) and associated DSD (11 hypospadias, nine cryp-
torchidism, one epispadia and one congenital hidrocele).

Endocrine Analysis. Plasma concentrations of 
steroid hormones, comprising mineralocorticoids, gluco-
corticoids and androgens, were determined using UPLC 
Quattro Premier/Xe system (Waters, Milford, MA, USA) 
as previously described [29-31].

In brief, aliquots of plasma samples, calibrator and 
controls with a volume of 0.1 mL were combined with an 
internal standard mixture to monitor recovery. All sam-
ples were extracted using Oasis MAX SPE system Plates 
(Waters).

Figure 1. Ultrasound images showing hypoplasia of the right 
kidney measuring 57 × 23 mm compared to a normal size left 
kidney 80 × 32 mm.
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Genetic Analyses. After receiving informed consent, 
collected according to the Ethics Board of the Macedo-
nian Academy of Sciences and Arts (Skopje, Republic of 
Macedonia), genomic DNA was obtained from peripheral 
blood samples using standard methods. Genome wide 
genotyping was conducted on patient MCD_13 using Il-
lumina 610-Quad chip (Illumina Inc., San Diego, CA, 
USA) [32].

Copy number variation analysis was performed as 
previously described and data were compared to 21,575 
multiethnic controls [28,33-35]. Briefly, genotype calls 
and quality-control analyses were conducted using Ge-
nomeStudio v.2010.3 (Illumina Inc.) and PLINK software 
[36]. Standardized genotyping methods implemented by 
the PennCNV program [37] were used for genome-wide 
CNV calls. The human reference genome hg18 (NCBI 
build 36.1, March 2006) was the reference assembly used 
to map the CNVs. The annotation of the CNVs was then 

performed using the UCSC RefGene and RefExon (CNVi-
sion program) [38].

Specific primers were designed to direct polymer-
ase chain reaction (PCR) at the exon and exon-intron 
boundaries of SOX3, and bidirectional Sanger sequenc-
ing was performed by BigDye® terminator (Nimagen BV, 
Nijmegen, The Netherlands) reaction followed by a run 
on an automatic capillary DNA sequencer. Sequence and 
alignment was conducted using Sequencer 5.4 software 
(Gene Codes Corp., Ann Arbor, MI, USA).

An adreno corticotropic hormone (ACTH) test showed 
normal basal and stimulated 17OH-progesterone excluding 
a form of 46,XX DSD due to 21-hydroxylase deficiency. 
The 11-deoxycorticosterone (DOC) and 11-deoxycortisol 
were normal at both baseline and after ACTH stimula-
tion, excluding 11-hydroxylase deficiency. Cortisol levels 
were in the mid-normal range at baseline and responded 
to stimulation, excluding primary adrenal insufficiency.

Table 1. Comparison of our patient characteristics with cases reported in the literature.

References [26] [26] [26] [27] This Study

Parameters Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Age (years) M-30 M-19; M-26 (histology) M-19 months M-30 months M-11

Height 165 cm 167.5 cm 75 cm 87.8 cm (11.8 kg) 148 cm (42 kg)

Penis size 10.2 cm long; 2.6 cm wide 3.4 cm long 32 mm long; 13 mm wide 5 cm

Testicular 
size ~ 5 mL ~6 mL right testicle appear  

smaller than left testicle 4 mL

Genitals and 
testes

scrotal hypoplasia;  
retractile testes; histology: 
atrophic changes with loss 
of normal hypoplastic 
scrotum; spermatogenesis; 
thickening and hyaliniza-
tion of the tubular basal 
lamina and diminished 
number of interstitial 
cells; normal spermatic 
cords

cryptochidism;  
hypospadias

moderate coronal hypo-
spadias

Secondary 
sexual char-
acteristics

normal
Tanner stage 5 pubic hair 
and penile development 
with small testes;  
onset age 13 years

NA NA

Develop-
mental  
issues

gender dysphoria from  
6 years; referred to  
behavioral therapist

microcephaly;  
developmental delay; 
growth retardation

none crossdressing

CAKUT – – – – hypospadias; kidney  
hypodysplasia

Genetic 
alterations

two microduplications  
of ~123 and 85 kb,  
the former of which 
spanned the entire  
SOX3 gene

microdeletion; a single 
343 kb immediately  
upstream of SOX3,  
suggesting that altered 
regulation of SOX3  
is the cause of XX  
male sex reversal

a large ~6 Mb duplication 
that encompasses SOX3 
and at least 18 additional 
distally located genes

de novo duplication  
(0.5 Mb) at Xq27.1  
comprising SOX3, CDR1 
and MIR320D2

a unique 550 kb  
duplication involving 
SOX3, the non coding  
RNA LINC00632, 
AK054921, CDR1 and  
the miRNA MIR320D2

NA: not available; CAKUT: congenital anomalies of the kidneys and urinary tract.
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The hCG (human chorionic gonadotrpin) test found 
testosterone in the low-normal range for male sex and age 
at baseline. After stimulation, it raised up to 146.0 ng/mL 
indicating the presence of functional Leydig cells targeted 
by hCG. The stimulated ratio A:T was below 1, not sup-
porting 17-β-hydroxysteroid dehydrogenase type 3 defi-
ciency. The stimulated ratio T:DHT was 5.6, not supporting 
5 α-reductase insufficiency. Microarray-based copy number 
analysis was previously performed in this patient as part of 
a larger study on congenital kidney defects [28].

In our 11-year-old male patient affected by renal 
dystrophy (RHD) and DSD (MCD_13), the microarray 
analysis showed an unique duplication of about 550 kb of 
the chromosome region Xq27, involving multiple genes 
and transcripts: SOX3, RP1-177G6 and CDR1, the non 
coding RNA LINC00632, and the miRNA MIR320D2 
[28] (Figure 2). None of the genes within the duplication 
locus has previously been reported to be in association 
with kidney and urinary tract phenotypes [39,40]. The 
chromosomal microarray analysis confirmed the 46,XX 
female karyotype. Parental DNA material was not avail-
able to test segregation; therefore, we could not verify if 
the Xq27 duplication was a de novo or inherited genomic 
imbalance. No causal mutations were detected in the 23 
male patients selected for targeted resequencing indicating 
that SOX3 coding variants might be a very rare cause of 
urinary tract malformations associated with DSDs.

DISCUSSION

There are four cases reported with SOX3 duplications 
in 46,XX SRY-negative males in the literature [26,27,41] 
(Table 1). Two of the 46,XX male patients, 30 and 26 years 
old, respectively, reported by Sutton et al. [26], had normal 
intelligence and growth; the third one had developmental 
delay, growth retardation and microcephaly. The patient 
described by Grinspon et al. [27] had normal growth and 

intelligence, but was affected by hypospadias and cryp-
torchidism, with ovotestis and hypoplastic testis. Histol-
ogy analysis showed atrophic changes and loss of normal 
spermatogenesis. Our patient’s clinical phenotype was 
characterized by normal development and intelligence, 
DSD characterized by hypospadias and males genitalia 
with 46,XX karyotype, and, unique compared to all other 
reported patients in the literature, hypoplasia of the left 
kidney. Interestingly, our patient, as well as the patient 
described by by Grinspon et al. [27], both with karyotype 
46,XX SRY-negative, were characterized by duplications 
involving the Xq27, encompassing the same genes: SOX3, 
the non coding RNA LINC00632, AK054921, CDR1 and 
the miRNA MIR320D2.

The question is whether the kidney defect observed 
in our patient is biologically related to the duplication of 
SOX3 or the other genes in the CNV, or if it represents a 
coincidental finding. Analysis of publicly available expres-
sion data (www.gudmap.org) indicates high expression of 
Sox3 in the mouse developing bladder neck at embryonic 
day E13.5, thus suggesting a possible link to lower urinary 
tract malformations. The SOX3 gene is known to be regu-
lated by PBX1 through direct interaction with its transcrip-
tion binding site [42]. Interestingly, another patient with 
renal hypodysplasia from our cohort, was found to carry 
a de novo 0.51 kb deletion affecting PBX1 [28]. Inactiva-
tion of Pbx1 in the mouse results in urinary malformations 
including renal agenesis and hypodysplasia [43]. Finally, a 
recent report implicates haploinsufficiency of PBX1 in the 
pathogenesis of syndromic forms of congenital anomalies 
of the kidney and urinary tract [44].

These data provide plausible links between SOX3 
gene dosage and kidney malformations. Formal proof of 
a causal link will require additional genetic and functional 
data. It is noteworthy that the current and reported SOX3 
duplications are below the detection threshold of standard 
karyotype and were found only by analyzing CNVs using 

Figure 2. The 550 kb duplication at Xq27 (ChrX: 139,360,520-139,908,320), involving SOX3, the non coding RNA LINC00632, 
AK054921, CDR1 and the miRNA MIR320D2.
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DNA microarrays. Therefore, it is important to convey 
that all 46,XX SRY-negative males should be screened 
for SOX3 duplications with DNA microarrays.

We report a case of an 11-year-old male with a dupli-
cation of chromosome Xq27, involving SOX3, and leading 
to a male sex reversal and, possibly, kidney hypoplasia. 
This is the second case of 46,XX SRY-negative affected by 
DSD and characterized by CNV involving the SOX3 locus, 
described so far. We speculate that the genomic duplication 
involving SOX3 could be responsible not only for pituitary 
hormone deficiencies in humans and male sex reversal, but 
also for CAKUT. All 46,XX SRY-negative patients, should 
be screened for duplications affecting SOX3.
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