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ABSTRACT

Vincristine (VCR), vinblastine (VBL) and 
vinorelbine (VRL) are anticancer agents from the 
Vinca alkaloid family that have the potential to in-
duce genotoxic effect. The aim of the present study 
was to compare the genotoxic effect of VCR, VBL 
and VRL. Levels of 8-hydroxy-2-deoxy guanosine 
(8-OHdG) and sister chromatid exchanges (SCEs) 
were measured in cultured human blood lymphocytes 
treated with VCR, VBL and VRL at concentrations 
of 0.01 and 0.1 µg/mL. Results showed that VCR, 
VBL and VRL significantly increased the 8-OHdG 
levels (p <0.05), whereas it did not cause a signifi-
cant increase in the frequencies of SCEs in human 
blood lymphocytes as compared to controls. On the 
other hand, all three agents significantly increased 
cells mitotic index (p <0.05). At both tested concen-

trations, the magnitude of the increase in 8-OHdG 
was VBL>VCR>VRL. In conclusion, VCR, VBL 
and VRL induce DNA damage as indicated by the 
increase in the 8-OHdG biomarker but with different 
magnitude.
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INTRODUCTION

Vinca alkaloids are a subset of drugs derived 
from the Madagascar periwinkle plant (Catharan-
thus roseus) [1]. They include the natural products 
vincristine (VCR) and vinblastine (VBL) and the 
semi-synthetic derivative vin-orelbine (VRL). Vinca 
alkaloids have been used for cancer management [2]. 
Chemically, vinca alkaloids have dimeric chemical 
structures composed of two basic multi-ringed units, 
an indole nucleus (catharanthine) and a dihydroin-
dole nucleus (vindoline), joined together with other 
complex systems [2,3].

Different Vinca alkaloids have their own unique 
properties. The VBL inhibits angiogenesis [4]. It is 
also associated with anti-diuretic hormone secretion 
and angina, and applied to treat Hodgkin’s disease, 
non-Hodgkin’s lymphoma and breast cancer [5]. The 
VRL showed a significant anti-tumor activity in pa-
tients with breast cancer and induces anti-prolifera-
tive activity in osteosarcoma [6]. Moreover, VCR has 
been shown to have a mild myelo-suppressive action 
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[7,8]. It is also widely used to treat pediatric leuke-
mias, solid tumors, and hematological malignancies 
[2]. During cell division, Vinca alkaloids bind to the 
building blocks of a protein called tubulin, inhibiting 
its formation, which normally works in cells to create 
mitotic spindle [9].

Previous studies have shown that Vinca alkaloids 
have the potential to induce genotoxic effects in dif-
ferent biological systems. The VCR and VBL have 
been shown to increase the frequency of micronuclei 
in experimental animals and in cultured human lym-
phocytes [10-13]. In addition, they have also been 
shown to cause chromosomal mutations in vivo and 
in cultured cancer cells [14,15]. In cultured human 
lymphocytes, VRB and VCR increased the rate of 
micronucleus formation [16]. In Drosophila, VCR 
and VBL induced a significant genotoxic effect as 
measured using wing somatic mutation and the re-
combination test [17]. However, some other studies 
have shown lack of mutagenic effect for Vinca alka-
loids in vivo and in cultured cells [18-20]. Thus, the 
genotoxicity of Vinca alkaloids is still controversial. 
In addition, oxidative DNA damage induced by these 
compounds has still not been investigated. The aim 
of the present study was to compare the genotoxic 
effect of VCR, VBL and VRL on human cultured 
lymphocytes using 8-hydroxy-2-deoxy guanosine 
(8-OHdG) and sister chromatid exchanges (SCEs) 
assays. The 8-OHdG is a marker that reflects oxida-
tive DNA damage, while the SCEs assay reflects 
genotoxicity induced as a result of breaks in DNA 
during DNA recombination.

MATERIALS AND METHODS

Subjects. Five healthy male nonsmoking vol-
unteers, with an age range of 20-25 years old, were 
the blood donors. Exclusion criteria were alcohol, 
cigarette smoking, medications and vitamin use. A 
sample of whole venous blood (15 mL) was col-
lected in heparin tubes from each donor under sterile 
conditions. Whole blood cells were cultured within 
1 hour of sampling. Informed consent was obtained 
from each volunteer. This study was approved by the 
Institutional Review Board of Jordan University of 
Science and Technology, Irbid, Jordan.

Drugs and Treatment. Vincristine, VBL and 
VRL were purchased from Sigma-Aldrich Produk-
tions GmbH (Steinheim am Albuch, Germany). 

To evaluate the effect of VCR, VBL and VRL on 
DNA, seven groups were used: a control group and 
drug-treated groups (VCR, VBL and VRL; each at 
concentrations of 0.01 and 0.1 µg/mL). The control 
group was treated with distilled water. Drug-treated 
groups were treated with the corresponding drug 4 
hours prior to harvesting. This was based on previous 
studies [21,22].

Lymphocytes Culture. Blood cultures were set 
up by inoculating 1 mL of freshly drawn blood into 75 
mL tissue-culture flasks containing 9 mL of periph-
eral blood (PB)-Max medium composed of Roswell 
Park Memorial Institute (RPMI) 1640 medium with 
15.0% fetal bovine serum (FBS), 1.0% penicillin-
streptomycin and 3.0% of phytohaemagglutinin (Gib-
co-Invitrogen Ltd., Paisley, Ren-frewshire, UK). To 
collect metaphase cells, cultures were exposed to 100 
µL of 10 µg/mL colcemid (Gibco-Invitrogen Ltd.) 2 
hours prior to cell harvesting [23,24].

The 8-Hydroxy-2-Deoxy Guanosine Assay. 
The 8-OHdG assay was performed as previously 
described [25]. In brief, blood cultures were set up 
by inoculating 0.5 mL of freshly drawn blood into 
50 mL culture flasks containing 4.5 mL of PB-Max 
medium. Then, the cultures were incubated for 72 
hours at 37 °C. Treatment was as described above. 
Cultures were then centrifuged at 1000 × g and 200 
µL from each was used for the 8-OHdG assay. Com-
petitive enzyme-linked-immunosorbent serologic as-
say (ELISA) for 8-OHdG were performed according 
to the manufacturer’s protocol protocol (Abcam Inc., 
Cambridge, MA, USA). Plates were read at 405 nm 
using an Epoch Biotek microplate reader (BioTek, 
Winooski, VT, USA). Levels of 8-OHdG were cal-
culated from the blotted standard curve.

Sister Chromatid Exchange Assay. A 25 µL 
of 0.01 g/L mL bromodeoxyridine (BrdU; Sigma-
Aldrich, St. Louis, MO, USA), was added to the cul-
ture media prior to incubation and throughout the 
experiment [23,24]. All cultures were maintained 
in total darkness to minimize photolysis of BrdU 
[26-28]. The culture initiation and slide preparation 
were similar to that described for the chromosomal 
aberration assay. Air-dried slides were differentially 
stained by 10 µg/mL of Hoechst 32285 dye solution 
(Fluka, Münich, Germany) for 15 min., followed by 
rinsing in water and mounted in McILvian buffer 
(Fisher Scientific, Waltham, MA, USA) (pH 8.0). 
The slides were then irradiated with two UV lamps 
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(350 nm and 15 W each) at a distance of 7 cm for 
35 min. at 40 °C [22]. Slides were then rinsed with 
distilled water, restained for 6-8 min. with 5.0% Gi-
emsa in phosphate buffer (pH 6.8) and then air-dried 
[27,29,30]. Sister chromatid exchanges were scored 
using second division cells (M2, 50 cells per donor) 
that contained 42-46 chromosomes and high resolu-
tion (Nikon, Shinagawa, Japan) light microscopy 
[25,31]. Cells in M2 phase have two differentially 
stained chromatids, one lightly stained and one darkly 
stained, while M1 phase cells are uniformly stained 
(two chromatids are darkly stained), and M3 phase 
cells contain a mixture of lightly stained, darkly 
stained and differentially stained chromatids [26].

Cell Kinetics Analysis. The mitotic index was 
calculated by analyzing at least 1000 cells from each 
subject and scoring the cells that were in metaphase 
as previously described [26]. For the cell prolifera-
tion index, 100 metaphase cells from each donor 
were scored. The proliferation index was calculated 
using the following formula: (1 X M1 + 2 X M2 + 3 
X > M3)/100, where M1, M2 and M3 are the num-
ber of cells at the first, second and third metaphase, 
respectively [24,32]. Depending on the proliferation 
index, the average generation time was calculated as 
the number of hours for the cells in BrdU (Sigma-
Aldrich), divided by the proliferation index [28].

Statistical Analyses. Statistical analysis was 
performed using Graphpad Prism statistical software 
version 4 (GraphPad Software, Inc., La Jolla, CA, 
USA). Data were expressed as mean ± standard error 

Figure 1. The level of 8-OHdG values in controls, VCR, VBL and VRL groups; each 
at concentrations of 0.01 and 0.1 µg/mL. The levels of 8-OHdG in all drug-treated 
groups at concentrations of 0.01 and 0.1 µg/mL were higher than control group. The 
asterisks (*) indicate significant differences (p <0.05) from the control group. The hash 
(#) indicates significant difference from all other groups.

(SE). The comparisons of parameters were performed 
using one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s multiple comparison test. Differ-
ences were regarded as significant at p <0.05.

RESULTS

Figure 1 shows the level of 8-OHdG in all 
groups. Levels of 8-OHdG in drug-treated groups 
(VCR, VBL and VRL; each at concentrations of 0.01 
and 0.1 µg/mL) were higher than those in the control 
group (p <0.05). These results indicate that VCR, 
VBL and VRL at concentrations of 0.01 and 0.1 µg/
mL induce oxidative DNA damage. Figure 1 also 
shows that at both tested concentrations, the mag-
nitude of the increase in 8-OHdG was higher in the 
VBL-treated group compared to the VCR and VRL 
groups (Figure 1).

Sister chromatid exchanges were observed in 
differentially stained M2 metaphase cells that have 
42-48 chromosomes. There was an increase in SCEs 
frequency between control and drug-treated groups 
(VCR, VBL and VRL, each at concentrations of 0.01 
and 0.1 µg/mL). However, this increase did not reach 
a significant level (p >0.05) (Figure 2).

Previous studies showed that Vinca alkaloid 
drugs affect spindle fibers and causes cell arrest in 
the mitotic phase. As expected, the mitotic index was 
higher in the VCR-, VBL- and VRL-treated groups 
compared to the control group (Figure 3). In addition, 
in all treated groups, the effect was dose dependent. 
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Moreover, the magnitude of mitotic arrest was similar 
in VCR, VBL and VRL (Figure 3).

DISCUSSION

The current study indicated that VCR, VBL 
and VRL, at concentrations of 0.01 and 0.1 µg/mL, 
induced oxidative DNA damage as shown using 
8-OHdG biomarker. The magnitude of the increase 
in 8-OHdG was higher in cells treated with VBL as 
compared to VCR and VRL.

The VCR, VBL and VRL have been reported 
to induce reactive oxygen and nitrogen species. For 
example, VRL has been shown to cause oxidative 

injury to cultured human endothelial cells [33]. In 
addition, treatment of human bronchial epithelial 
cell with VCR was associated with oxidative DNA 
damage as measured using normal alkaline and for-
mamidopyrimidine-DNA-glycosylase (FPG) modi-
fied comet assays [10,33,34]. It was recently reported 
that chronic treatment with antioxidant agents pre-
vented che-motherapies, including VBL, induced 
oxidative damage and restores normal mitochondrial 
function in hepatic cells [35]. In this study, a sig-
nificant increase in the level of 8-OHdG, which is 
a standard biomarker for oxidative DNA damage 
[36,37], was shown when cultured human lympho-
cytes were treated with VCR, VBL and VRL. This 

Figure 2. The average of SCEs/cell in controls, VCR, VBL and VRL groups; each at 
concentrations of 0.01 and 0.1 µg/mL in cultured blood cells. Increases were detected 
among the groups. However, it did not reach significant levels (control vs. VCR group: 
p >0.05; control vs. VBL group: p >0.05, and control vs. VRL group: p >0.05).

Figure 3. The mitotic index in cultured cells treated with VCR, VBL and VRL; each at 
concentrations of 0.01 and 0.1 µg/mL. The value of the mitotic index was significantly 
higher (p <0.05) in lymphocytes treated with VCR, VBL and VRL; each at concentra-
tions of 0.01 and 0.1 µg/ mL.
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variation could be due to the unique properties of 
these Vinca alkaloids (see Introduction). However, 
this point requires further investigation.

Current results show that at both tested doses, 
VBL induced increases in the levels of 8-OHdG that 
were larger in magnitude than those induced by both 
VCR and VRL. The exact mechanism for such am-
plified effect of VBL on the levels of 8-OHdG is 
unknown. However, previous studies have shown 
a differential effect for VBL on bone marrow cell 
as compared to fetal liver cells [17]. Additionally, 
VBL was shown to alter calcium homeostasis via 
mitochondrial membranes leading to substantiated 
cyto-toxicity as compared to VCR [38].

Results of this study showed no significant in-
crease in SCEs frequency in the VCR-, VBL- and 
VRL-treated groups. Previous studies indicated the 
possible genotoxicity of VCR and VBL [12]. For 
example, VCR was shown to induce DNA misrepair, 
telomere end fusions, nuclear buds, and increased fre-
quency of gene mutations, all of which points to the 
possible genotoxicity of VCR [10]. Vincristine was 
also shown to increase the number of micronucleated 
cells, indicating its possible genotoxcicity [39,40]. 
All three agents, VCR, VBL and VRL, showed signs 
of genotoxicity in the Drosophila model [17]. On 
the other hand, VBL was recently shown to induce 
chromosomal aberrations and increase mitotic index 
in vitro in bone marrow cells, which was prevented 
by pretreatment with various doses of caffeine [41]. 
However, using the mouse lymphoma assay, VCR 
pretreatment for 3 hours did not show positive results 
for genotoxicity [42]. Additionally, increasing doses 
of VCR or VBL treatments were found to decrease the 
numbers of chromosomal aberrations along with an 
increase in number of micronucleated cells [11,43]. 
In another in vivo study in pregnant mice, a 2-week 
treatment with VCR did not induce an increase in 
SCEs in both maternal and fetal tissues, although it 
was capable of increasing the frequency of micronu-
clei [44]. Thus, it seems that Vinca alkaloids are able 
to induce certain types of DNA alterations such as 
oxidative and micronuclei but not others (i.e., SCEs). 
This could be due to their mechanism of action that 
is associated with activation of apoptosis through 
interference with spindle fiber formation and mito-
chondrial function. Moreover, the aberrant variations 
in the genotoxicity results for VCR in in vitro cul-
tured cell techniques and mammalian models could 

be related to variation in models, doses and duration 
of drug treatment.

The current results showed increased mitotic 
index in cells treated with VCR, VBL and VRL, in-
dicating an antimitotic activity of these compounds. 
This is consistent with previous results showing that 
VCR increased apoptotic cell numbers and ratios 
and decreased the nuclear division in a dose-depen-
dent manner, thus, showing the cytotoxicity of VCR 
[10,40]. In fact, Vinca alkaloids including VCR, VBL 
and VRL, are known to exert their cytoxicity via 
arresting mitosis and going into interphase [45,46], 
which is consistent with the current results. Based 
on the these results, we concluded that VCR, VBL 
and VRL induce oxidative DNA damage in whole 
blood lymphocytes.
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